Dynamic Visualization and Fast Computation for Convex Clustering via Algorithmic Regularization

Michael Weylandt

To Appear in the *Journal of Computational and Graphical Statistics* **JSM 2019**: 2019-07-30 at 10:30am in CC-704

Department of Statistics, Rice University, Houston, TX USA

Acknowledgements

US NSF:

- GRFP-1842494,
 NeuroNex-1707400,
- DMS-1554821, 1264058

Co-Authors:

- John Nagorski (Rice)
- Genevera Allen (Rice)

Methods available in the clustRviz R package

github.com/DataSlingers/clustRviz

Paper to appear in J. Computational and Graphical Statistics (2019+)

Clustering

Clustering: identifying sub-populations in unlabelled data

Clustering

Clustering: identifying sub-populations in unlabelled data

Example: breast cancer sub-typing & precision medicine

Clustering

Clustering: identifying sub-populations in unlabelled data

Example: breast cancer sub-typing & precision medicine

Existing methods for clustering:

Existing methods for clustering:

K-Means

· Good: Fast

· Bad: Non-Convex

Ugly: How many clusters?

Existing methods for clustering:

K-Means

· Good: Fast

· Bad: Non-Convex

Ugly: How many clusters?

· Hierarchical Clustering

· Good: Fast, nice visualizations

· Bad: Many variants

· Ugly: How many clusters?

Existing methods for clustering:

K-Means

· Good: Fast

· Bad: Non-Convex

Ugly: How many clusters?

· Hierarchical Clustering

· Good: Fast, nice visualizations

· Bad: Many variants

· Ugly: How many clusters?

 Others: spectral clustering, GMM+EM, DBSCAN, etc.

Consider the Humble Dendrogram

Dendrograms:

- Easily-understood, ubiquitous
- Show multiple clusterings simultaneously
- Give a sense of separation (ordinate)

Convex Clustering

Convex clustering (Hocking et al. 2011; Lindsten et al. 2011; Pelckmans et al. 2005):

$$\hat{\mathbf{U}} = \underset{\mathbf{U} \in \mathbb{R}^{n \times p}}{\min} \frac{1}{2} \|\mathbf{X} - \mathbf{U}\|_F^2 + \underset{\substack{i,j=1\\i \neq j}}{\lambda} \sum_{i,j=1}^n w_{ij} \|\mathbf{U}_{i.} - \mathbf{U}_{j.}\|_q$$

Observations are clustered together if $\hat{\mathbf{U}}_{i} = \hat{\mathbf{U}}_{j}$. Estimated centroids $\hat{\mathbf{U}}$ are close to original data and fused together Convexity implies:

- Global optimality + efficient algorithms
- Good statistical properties

 λ controls number of clusters smoothly

Convex Clustering: Related Work

Related Work:

- Basic Framework: Hocking et al. (2011), Lindsten et al. (2011), and Pelckmans et al. (2005)
- Algorithms: Chen et al. (2015), Chi and Lange (2015), Ho et al. (2019), Panahi et al. (2017), and Sun et al. (2018)
- Two-Way Matrix / Bi-Clustering: Chi et al. (2017) and Weylandt (2019)
- Multi-Way Tensor / Co-Clustering: Chi et al. (2018)
- Consistency: Panahi *et al.* (2017), Radchenko and Mukherjee (2017), Tan and Witten (2015), and Zhu *et al.* (2014)
- Non-Convex Penalties: Marchetti and Zhou (2014), Pan et al. (2013), Shah and Koltun (2017), and Wu et al. (2016)
- · Robustness: Wang et al. (2016)
- Feature Selection: Wang et al. (2018)
- Generalized Losses: Wang and Allen (2019+)

Convex Clustering: Related Work

Related Work:

- Basic Framework: Hocking et al. (2011), Lindsten et al. (2011), and Pelckmans et al. (2005)
- Algorithms: Chen et al. (2015), Chi and Lange (2015), Ho et al. (2019), Panahi et al. (2017), and Sun et al. (2018)
- Two-Way Matrix / Bi-Clustering: Chi et al. (2017) and Weylandt (2019)
- Multi-Way Tensor / Co-Clustering: Chi et al. (2018)
- Consistency: Panahi *et al.* (2017), Radchenko and Mukherjee (2017), Tan and Witten (2015), and Zhu *et al.* (2014)
- Non-Convex Penalties: Marchetti and Zhou (2014), Pan et al. (2013), Shah and Koltun (2017), and Wu et al. (2016)
- · Robustness: Wang et al. (2016)
- Feature Selection: Wang et al. (2018)
- Generalized Losses: Wang and Allen (2019+)

Despite all this, relatively little adoption: speed, graphics, and software support

Simplified form:

$$\underset{\mathbf{U} \in \mathbb{R}^{n \times p}}{\arg\min} \, \frac{1}{2} \|\mathbf{X} - \mathbf{U}\|_F^2 + \lambda \underbrace{\|\mathbf{D}\mathbf{U}\|_{\mathsf{row},q}}_{P(\mathbf{D}\mathbf{U})}$$

Simplified form:

$$\underset{\mathbf{U} \in \mathbb{R}^{n \times p}}{\arg\min} \, \frac{1}{2} \|\mathbf{X} - \mathbf{U}\|_F^2 + \lambda \underbrace{\|\mathbf{D}\mathbf{U}\|_{\text{row},q}}_{P(\mathbf{D}\mathbf{U})}$$

ADMM for Convex Clustering (Chi and Lange 2015; Weylandt et al. 2019+):

1.
$$U^{(k+1)} = (I + \rho D^T D)^{-1} (X + D(V^{(k)} - Z^{(k)}))$$

2.
$$V^{(k+1)} = prox_{\lambda/\rho P(\cdot)} (DU^{(k+1)} + Z^{(k)})$$

3.
$$Z^{(k+1)} = Z^{(k)} + \rho(DU^{(k+1)} - V^{(k+1)})$$

Fastest general purpose solver for convex clustering, but still slow ...

Simplified form:

$$\underset{\mathbf{U} \in \mathbb{R}^{n \times p}}{\arg\min} \, \frac{1}{2} \|\mathbf{X} - \mathbf{U}\|_F^2 + \lambda \underbrace{\|\mathbf{D}\mathbf{U}\|_{\text{row},q}}_{P(\mathbf{D}\mathbf{U})}$$

ADMM for Convex Clustering (Chi and Lange 2015; Weylandt et al. 2019+):

1.
$$U^{(k+1)} = (I + \rho D^T D)^{-1} (X + D(V^{(k)} - Z^{(k)}))$$

2.
$$V^{(k+1)} = prox_{\lambda/\rho P(\cdot)} (DU^{(k+1)} + Z^{(k)})$$

3.
$$Z^{(k+1)} = Z^{(k)} + \rho(DU^{(k+1)} - V^{(k+1)})$$

Fastest general purpose solver for convex clustering, but still slow ...

• **D**-matrix has $\binom{n}{2}$ rows but large nullspace

Simplified form:

$$\underset{\mathbf{U} \in \mathbb{R}^{n \times p}}{\arg\min} \, \frac{1}{2} \|\mathbf{X} - \mathbf{U}\|_{F}^{2} + \lambda \underbrace{\|\mathbf{D}\mathbf{U}\|_{\text{row},q}}_{P(\mathbf{D}\mathbf{U})}$$

ADMM for Convex Clustering (Chi and Lange 2015; Weylandt et al. 2019+):

1.
$$U^{(k+1)} = (I + \rho D^T D)^{-1} (X + D(V^{(k)} - Z^{(k)}))$$

2.
$$V^{(k+1)} = prox_{\lambda/\rho P(\cdot)} (DU^{(k+1)} + Z^{(k)})$$

3.
$$Z^{(k+1)} = Z^{(k)} + \rho(DU^{(k+1)} - V^{(k+1)})$$

Fastest general purpose solver for convex clustering, but still slow ...

- **D**-matrix has $\binom{n}{2}$ rows but large nullspace
- Fusion penalty non-separable and induces no (computational) sparsity

Simplified form:

$$\underset{\mathbf{U} \in \mathbb{R}^{n \times p}}{\arg\min} \, \frac{1}{2} \|\mathbf{X} - \mathbf{U}\|_F^2 + \lambda \underbrace{\|\mathbf{D}\mathbf{U}\|_{\text{row},q}}_{P(\mathbf{D}\mathbf{U})}$$

ADMM for Convex Clustering (Chi and Lange 2015; Weylandt et al. 2019+):

1.
$$U^{(k+1)} = (I + \rho D^T D)^{-1} (X + D(V^{(k)} - Z^{(k)}))$$

2.
$$V^{(k+1)} = prox_{\lambda/\rho P(\cdot)} (DU^{(k+1)} + Z^{(k)})$$

3.
$$Z^{(k+1)} = Z^{(k)} + \rho(DU^{(k+1)} - V^{(k+1)})$$

Fastest general purpose solver for convex clustering, but still slow ...

- **D**-matrix has $\binom{n}{2}$ rows but large nullspace
- Fusion penalty non-separable and induces no (computational) sparsity
- $\mathcal{O}(n^2p)$ variables

Difficulties of Convex Clustering Optimization

Dendrogram recovery:

- Need to solve at (at least) n-1 different λ values
- · Don't know what those are a priori

Difficulties of Convex Clustering Optimization

Dendrogram recovery:

- Need to solve at (at least) n-1 different λ values
- · Don't know what those are a priori

Grid search expensive

Not amenable to homotopy (path-following) algorithms

Local and Global Accuracy

Two (contrary?) aims:

- \cdot Local Accuracy: optimization convergence at all λ
- · Global Accuracy: solution at dense λ grid

Local and Global Accuracy

Two (contrary?) aims:

- · Local Accuracy: optimization convergence at all λ
- Global Accuracy: solution at dense λ grid

Standard optimization techniques give *local* accuracy Relatively little consideration of *global* accuracy

Local and Global Accuracy

Two (contrary?) aims:

- \cdot Local Accuracy: optimization convergence at all λ
- Global Accuracy: solution at dense λ grid

Standard optimization techniques give local accuracy

Relatively little consideration of global accuracy

Global accuracy often more interesting: variable selection order, dendrograms, etc.

It's Getting Hot In Here! Advantages of Warm Starting

Useful trick: warm starts!

If solving for grid of λ , use $\hat{\mathbf{U}}_{\lambda_{k-1}}$ to start algorithm for $\hat{\mathbf{U}}_{\lambda_k}$

It's Getting Hot In Here! Advantages of Warm Starting

Useful trick: warm starts!

If solving for grid of λ , use $\hat{\mathbf{U}}_{\lambda_{k-1}}$ to start algorithm for $\hat{\mathbf{U}}_{\lambda_k}$

Starting near solution reduces number of iterations needed to converge

It's Getting Hot In Here! Advantages of Warm Starting

Useful trick: warm starts!

If solving for grid of λ , use $\hat{\mathbf{U}}_{\lambda_{k-1}}$ to start algorithm for $\hat{\mathbf{U}}_{\lambda_k}$

Starting near solution reduces number of iterations needed to converge

Second-order benefit: algorithms have improved *local* convergence rates near solutions

Some Mild Heresy

Warm-Started ADMM:

- · Initialize $l=0, \lambda_l=\epsilon, V^{(0)}=Z^{(0)}=DX$
- Repeat until $\|\mathbf{V}^{(k)}\| = 0$:
 - · Repeat until convergence:

(i)
$$U^{(k+1)} = (I + D^T D)^{-1} (X + D^T (V^{(k)} - Z^{(k)}))$$

(ii)
$$V^{(k+1)} = \text{prox}_{\lambda_i P(\cdot)} \left(DU^{(k+1)} + Z^{(k)} \right)$$

(iii)
$$Z^{(k+1)} = Z^{(k)} + DU^{(k+1)} - V^{(k+1)}$$

(iv)
$$k := k + 1$$

- · Store $\hat{\mathbf{U}}_{\lambda_l} = \mathbf{U}^{(k)}$
- Update regularization: l := l + 1; $\lambda_l := \lambda_{l-1} * t$
- · Return $\{\hat{\mathbf{U}}_{\lambda}\}$ as the regularization path

Some Mild Heresy

CARP Algorithm:

- · Initialize $l=0, \lambda_l=\epsilon, V^{(0)}=Z^{(0)}=DX$
- Repeat until $\|\mathbf{V}^{(k)}\| = 0$:
 - · Do Once:
 - (i) $U^{(k+1)} = (I + D^T D)^{-1} (X + D^T (V^{(k)} Z^{(k)}))$
 - (ii) $V^{(k+1)} = prox_{\lambda_i P(\cdot)} (DU^{(k+1)} + Z^{(k)})$
 - (iii) $Z^{(k+1)} = Z^{(k)} + DU^{(k+1)} V^{(k+1)}$
 - (iv) k := k + 1
 - · Store $\hat{\mathbf{U}}_{\lambda_l} = \mathbf{U}^{(k)}$
 - Update regularization: l := l + 1; $\lambda_l := \lambda_{l-1} * t$
- \cdot Return $\{\hat{\mathbf{U}}_{\lambda}\}$ as the algorithmic regularization path

Some Mild Heresy

CARP Algorithm:

- Initialize l = 0, $\lambda_l = \epsilon$, $V^{(0)} = Z^{(0)} = DX$
- Repeat until $\|\mathbf{V}^{(k)}\| = 0$:
 - · Do Once:
 - (i) $U^{(k+1)} = (I + D^T D)^{-1} (X + D^T (V^{(k)} Z^{(k)}))$
 - (ii) $V^{(k+1)} = prox_{\lambda_i P(\cdot)} (DU^{(k+1)} + Z^{(k)})$
 - (iii) $Z^{(k+1)} = Z^{(k)} + DU^{(k+1)} V^{(k+1)}$
 - (iv) k := k + 1
 - · Store $\hat{\mathbf{U}}_{\lambda_l} = \mathbf{U}^{(k)}$
 - Update regularization: l := l + 1; $\lambda_l := \lambda_{l-1} * t$
- · Return $\{\hat{\mathbf{U}}_{\lambda}\}$ as the algorithmic regularization path

CARP: Convex Clustering via Algorithmic Regularization Paths

Algorithmic Regularization

Algorithmic Regularization: Single Optimization Step then Update λ

Algorithmic Regularization

Algorithmic Regularization: Single Optimization Step then Update λ

Faster, but can it work?

Eppur si muove!

Eppur si muove!

Yes - it seems to work!

Intuition: Warm-starting at previous iteration gets "good enough" answer in one-step

Practical Advantages: Same number of iterations spent at many more $\lambda \implies$ finer grid!

A Convergence Theorem

Theorem (Informal): Global Recovery of Entire Path

As the step-size *t* goes to zero, CARP recovers the entire solution path (primal and dual):

$$\max \left\{ \sup_{\lambda} \inf_{k} \left\| \mathbf{U}^{(k)} - \hat{\mathbf{U}}_{\lambda} \right\|, \sup_{k} \inf_{\lambda} \left\| \mathbf{U}^{(k)} - \hat{\mathbf{U}}_{\lambda} \right\| \right\} \xrightarrow{(t,\epsilon) \to (1,0)} 0$$

$$\max \left\{ \sup_{\lambda} \inf_{k} \left\| \mathbf{Z}^{(k)} - \hat{\mathbf{Z}}_{\lambda} \right\|, \sup_{k} \inf_{\lambda} \left\| \mathbf{Z}^{(k)} - \hat{\mathbf{Z}}_{\lambda} \right\| \right\} \xrightarrow{(t,\epsilon) \to (1,0)} 0$$

A Convergence Theorem

Theorem (Informal): Global Recovery of Entire Path

As the step-size *t* goes to zero, CARP recovers the entire solution path (primal and dual):

$$\max \left\{ \sup_{\lambda} \inf_{k} \left\| \mathbf{U}^{(k)} - \hat{\mathbf{U}}_{\lambda} \right\|, \sup_{k} \inf_{\lambda} \left\| \mathbf{U}^{(k)} - \hat{\mathbf{U}}_{\lambda} \right\| \right\} \xrightarrow{(t,\epsilon) \to (1,0)} 0$$

$$\max \left\{ \sup_{\lambda} \inf_{k} \left\| \mathbf{Z}^{(k)} - \hat{\mathbf{Z}}_{\lambda} \right\|, \sup_{k} \inf_{\lambda} \left\| \mathbf{Z}^{(k)} - \hat{\mathbf{Z}}_{\lambda} \right\| \right\} \xrightarrow{(t,\epsilon) \to (1,0)} 0$$

Very strong convergence - global and local + primal and dual

A Convergence Theorem

Theorem (Informal): Global Recovery of Entire Path

As the step-size *t* goes to zero, CARP recovers the entire solution path (primal and dual):

$$\max \left\{ \sup_{\lambda} \inf_{k} \left\| \mathbf{U}^{(k)} - \hat{\mathbf{U}}_{\lambda} \right\|, \sup_{k} \inf_{\lambda} \left\| \mathbf{U}^{(k)} - \hat{\mathbf{U}}_{\lambda} \right\| \right\} \xrightarrow{(t,\epsilon) \to (1,0)} 0$$

$$\max \left\{ \sup_{\lambda} \inf_{k} \left\| \mathbf{Z}^{(k)} - \hat{\mathbf{Z}}_{\lambda} \right\|, \sup_{k} \inf_{\lambda} \left\| \mathbf{Z}^{(k)} - \hat{\mathbf{Z}}_{\lambda} \right\| \right\} \xrightarrow{(t,\epsilon) \to (1,0)} 0$$

Very strong convergence - global and local + primal and dual

The whole path and nothing but the path

Key elements of proof:

- Problem is strongly convex (always) so ADMM converges linearly (Deng and Yin 2016)
- · Solution path is *Lipschitz* so $\|\partial \hat{\mathbf{U}}_{\lambda}/\partial \lambda\|$ is bounded above

Proof Sketch:

Key elements of proof:

- Problem is strongly convex (always) so ADMM converges linearly (Deng and Yin 2016)
- · Solution path is Lipschitz so $\|\partial \hat{\mathbf{U}}_{\lambda}/\partial \lambda\|$ is bounded above

Proof Sketch:

· At initalization:

$$\|\mathbf{U}^{(0)} - \hat{\mathbf{U}}_{\epsilon}\| \leq L\epsilon$$
 by Lipschitz-ness of \mathbf{U}_{λ}

Key elements of proof:

- Problem is strongly convex (always) so ADMM converges linearly (Deng and Yin 2016)
- · Solution path is Lipschitz so $\|\partial \hat{\mathbf{U}}_{\lambda}/\partial \lambda\|$ is bounded above

Proof Sketch:

· At initalization:

$$\|\mathbf{U}^{(0)} - \hat{\mathbf{U}}_{\epsilon}\| \leq L\epsilon$$
 by Lipschitz-ness of \mathbf{U}_{λ}

· After one step:

$$\|U^{(1)} - \hat{U}_{t\epsilon}\| \le c\|U^{(0)} - \hat{U}_{t\epsilon}\| \le c\|U^{(0)} - \hat{U}_{\epsilon}\| + c\|\hat{U}_{\epsilon} - \hat{U}_{t\epsilon}\| \le cL\epsilon + c(t-1)\epsilon$$

Key elements of proof:

- Problem is strongly convex (always) so ADMM converges linearly (Deng and Yin 2016)
- · Solution path is *Lipschitz* so $\|\partial \hat{\mathbf{U}}_{\lambda}/\partial \lambda\|$ is bounded above

Proof Sketch:

· At initalization:

$$\|\mathbf{U}^{(0)} - \hat{\mathbf{U}}_{\epsilon}\| \leq L\epsilon$$
 by Lipschitz-ness of \mathbf{U}_{λ}

· After one step:

$$\|U^{(1)} - \hat{U}_{t\epsilon}\| \le c\|U^{(0)} - \hat{U}_{t\epsilon}\| \le c\|U^{(0)} - \hat{U}_{\epsilon}\| + c\|\hat{U}_{\epsilon} - \hat{U}_{t\epsilon}\| \le cL\epsilon + c(t-1)\epsilon$$

· Iterating:

$$\|\mathbf{U}^{(k)} - \hat{\mathbf{U}}_{t^k \epsilon}\| \le c^k L\epsilon + L(t-1)\epsilon t^k \sum_{i=1}^{k-1} \left(\frac{c}{t}\right)^i$$

Key elements of proof:

- Problem is strongly convex (always) so ADMM converges linearly (Deng and Yin 2016)
- · Solution path is Lipschitz so $\|\partial \hat{\mathbf{U}}_{\lambda}/\partial \lambda\|$ is bounded above

Proof Sketch:

· At initalization:

$$\|\mathbf{U}^{(0)} - \hat{\mathbf{U}}_{\epsilon}\| \leq L\epsilon$$
 by Lipschitz-ness of \mathbf{U}_{λ}

· After one step:

$$\|\boldsymbol{U}^{(1)} - \hat{\boldsymbol{U}}_{t\epsilon}\| \leq c\|\boldsymbol{U}^{(0)} - \hat{\boldsymbol{U}}_{t\epsilon}\| \leq c\|\boldsymbol{U}^{(0)} - \hat{\boldsymbol{U}}_{\epsilon}\| + c\|\hat{\boldsymbol{U}}_{\epsilon} - \hat{\boldsymbol{U}}_{t\epsilon}\| \leq cL\epsilon + c(t-1)\epsilon$$

· Iterating:

$$\|\mathbf{U}^{(k)} - \hat{\mathbf{U}}_{t^k \epsilon}\| \le c^k L\epsilon + L(t-1)\epsilon t^k \sum_{i=1}^{k-1} \left(\frac{c}{t}\right)^i$$

• Show this goes to zero for all k simultaneously as $t, \epsilon \to 0$

Authors and Genes

Two test data sets:

- Authors $\in \mathbb{R}^{841 \times 69}$: stop-word counts from 4 authors
- TCGA $\in \mathbb{R}^{438 \times 353}$: gene expression from 3 breast cancer subtypes

Authors and Genes

Authors and Genes

CBASS: Convex Bi-Clustering

Similar modification to Chi et al. (2017) or Weylandt (2019) yields

CBASS:

Convex BiClustering via Algorithmic Regularization with Small Steps

Also in clustRviz

Future Work

Where else can we use Algorithmic Regularization:

- Signal Approximation
- "Big n Problems"
- \cdot ℓ_2 (Tikhonov) Regularization

Future Work

Where else can we use Algorithmic Regularization:

- · Signal Approximation
- "Big n Problems"
- ℓ_2 (Tikhonov) Regularization

Extensions of Algorithmic Regularization:

- · Inexact Updates
- · Multi-Block
- Non-Strongly Convex
- · "Nice" Non-Convex
- · Stochastic / Parallel Updates

Presidential speeches data set (n = 44, p = 75):

- Relative word frequency of top 75 words from inaugurations,
 State of the Union, and other famous speeches
- · Words are stemmed and frequencies are log-transformed

Paths:

Outlier:

- Republican
- Known for pro-business and anti-immigration policies
- · Tried to upend traditional alliances
- First president elected from previous (non-traditional) background
- · Campaigned on return to past glories

Outlier:

Paths:

Paths:

W., Nagorski, and Allen: "Dynamic Visualization and Fast Computation for Convex Clustering via Algorithmic Regularization ." JCGS 2019+.

• github.com/DataSlingers/clustRviz

Thank you!

W., Nagorski, and Allen: "Dynamic Visualization and Fast Computation for Convex Clustering via Algorithmic Regularization." JCGS 2019+.

- Algorithmic Regularization Meta-Algorithm: One Optimization Step per λ

github.com/DataSlingers/clustRviz

Thank you!

W., Nagorski, and Allen: "Dynamic Visualization and Fast Computation for Convex Clustering via Algorithmic Regularization." JCGS 2019+.

- Algorithmic Regularization Meta-Algorithm: One Optimization Step per λ
 - Faster Computation & More Accurate Global Structure

O github.com/DataSlingers/clustRviz

W., Nagorski, and Allen: "Dynamic Visualization and Fast Computation for Convex Clustering via Algorithmic Regularization." JCGS 2019+.

- Algorithmic Regularization Meta-Algorithm: One Optimization Step per λ
 - · Faster Computation & More Accurate Global Structure
 - · CARP and CBASS Algorithms for Clustering and Bi-Clustering

O github.com/DataSlingers/clustRviz

W., Nagorski, and Allen: "Dynamic Visualization and Fast Computation for Convex Clustering via Algorithmic Regularization." *JCGS* 2019+.

- Algorithmic Regularization Meta-Algorithm: One Optimization Step per λ
 - · Faster Computation & More Accurate Global Structure
 - · CARP and CBASS Algorithms for Clustering and Bi-Clustering
 - First global convergence result for one-step schemes

github.com/DataSlingers/clustRviz

W., Nagorski, and Allen: "Dynamic Visualization and Fast Computation for Convex Clustering via Algorithmic Regularization ." JCGS 2019+.

- Algorithmic Regularization Meta-Algorithm: One Optimization Step per λ
 - · Faster Computation & More Accurate Global Structure
 - · CARP and CBASS Algorithms for Clustering and Bi-Clustering
 - First *global* convergence result for one-step schemes
- · Convex Clustering:

github.com/DataSlingers/clustRviz

W., Nagorski, and Allen: "Dynamic Visualization and Fast Computation for Convex Clustering via Algorithmic Regularization ." JCGS 2019+.

- Algorithmic Regularization Meta-Algorithm: One Optimization Step per λ
 - · Faster Computation & More Accurate Global Structure
 - · CARP and CBASS Algorithms for Clustering and Bi-Clustering
 - First *global* convergence result for one-step schemes
- · Convex Clustering:
 - Strong Statistical Guarantees

github.com/DataSlingers/clustRviz

W., Nagorski, and Allen: "Dynamic Visualization and Fast Computation for Convex Clustering via Algorithmic Regularization." JCGS 2019+.

- Algorithmic Regularization Meta-Algorithm: One Optimization Step per λ
 - · Faster Computation & More Accurate Global Structure
 - · CARP and CBASS Algorithms for Clustering and Bi-Clustering
 - First *global* convergence result for one-step schemes
- · Convex Clustering:
 - Strong Statistical Guarantees
 - Fast(er) Computation + Dynamic & Iteractive Visualizations!

github.com/DataSlingers/clustRviz

References i

- Chen, Gary K., Eric C. Chi, John Michael O. Ranola, and Kenneth Lange (2015). "Convex Clustering: An Attractive Alternative to Hierarchical Clustering". *PLOS Computational Biology* 11.5, e1004228.
- Chi, Eric C., Genevera I. Allen, and Richard G. Baraniuk (2017). "Convex Biclustering". *Biometrics* 73.1, pp. 10–19.
- Chi, Eric C., Brian R. Gaines, Will Wei Sun, Hua Zhou, and Jian Yang (2018). "Provable Convex Co-Clustering of Tensors". *ArXiv Pre-Print 1803.06518*.
- Chi, Eric C. and Kenneth Lange (2015). "Splitting Methods for Convex Clustering".

 Journal of Computational and Graphical Statistics 24.4, pp. 994–1013.
- Deng, Wei and Wotao Yin (2016). "On the Global and Linear Convergence of the Generalized Alternating Direction Method of Multipliers". *Journal of Scientific Computing* 66.3, pp. 889–916.
- Ho, Nhat, Tianyi Lin, and Michael I. Jordan (2019). "Global Error Bounds and Linear Convergence for Gradient-Based Algorithms for Trend Filtering and ℓ₁-Convex Clustering". *ArXiv Pre-Print* 1904.07462.

References ii

- Hocking, Toby Dylan, Armand Joulin, Francis Bach, and Jean-Philippe Vert (2011). "Clusterpath: An Algorithm for Clustering using Convex Fusion Penalties". In: *ICML* 2011: Proceedings of the 28th International Conference on Machine Learning. Ed. by Lise Getoor and Tobias Scheffer. Bellevue, Washington, USA: ACM, pp. 745–752. ISBN: 978-1-4503-0619-5.
- Lindsten, Fredrik, Henrik Ohlsson, and Lennart Ljung (2011). "Clustering using sum-of-norms regularization: With application to particle filter output computation". In: SSP 2011: Proceedings of the 2011 IEEE Statistical Signal Processing Workshop. Ed. by Petar M. Djuric. Nice, France: Curran Associates, Inc., pp. 201–204.
- Marchetti, Yuliya and Qing Zhou (2014). "Solution Path Clustering with Adaptive Concave Penalty". *Electronic Journal of Statistics* 8.1, pp. 1569–1603.
- Pan, Wei, Xiaotong Shen, and Binghui Liu (2013). "Cluster Analysis: Unsupervised Learning via Supervised Learning with a Non-convex Penalty". *Journal of Machine Learning Research* 14, pp. 1865–1889.
- Panahi, Ashkan, Devdatt Dubhashi, Fredrik D. Johansson, and Chiranjib Bhattacharyya (2017). "Clustering by Sum of Norms: Stochastic Incremental Algorithm, Convergence, and Cluster Recovery". In: ICML:2017: Proceedings of the 34th International Conference on Machine Learning. Ed. by Doina Precup and Yee Whye Teh. Vol. 70. Sydney, Australia: PMLR, pp. 2769–2777.

References iii

- Pelckmans, Kristiaan, Joseph de Brabanter, Bart de Moor, and Johan Suykens (2005). "Convex Clustering Shrinkage". In: PASCAL Workshop on Statistics and Optimization of Clustering.
- Radchenko, Peter and Gourab Mukherjee (2017). "Convex Clustering via ℓ₁ Fusion Penalization". Journal of the Royal Statistical Society, Series B: Statistical Methodology 79.5, pp. 1527–1546.
- Shah, Sohil Atul and Vladlen Koltun (2017). "Robust continuous clustering".

 Proceedings of the National Academy of Sciences of the United States 114.37,
 pp. 9814–9819.
- Sun, Defeng, Kim-Chuan Toh, and Yancheng Yuan (2018). "Convex Clustering: Model, Theoretical Guarantee and Efficient Algorithm". *ArXiv Pre-Print 1810.02677*.
- Tan, Kean Ming and Daniela Witten (2015). "Statistical Properties of Convex Clustering". Electronic Journal of Statistics 9.2, pp. 2324–2347.
- Wang, Binhuan, Yilong Zhang, Will Wei Sun, and Yixin Fang (2018). "Sparse Convex Clustering". Journal of Computational and Graphical Statistics 27.2, pp. 393–403.

References iv

- Wang, Qi, Pinghua Gong, Shiyu Chang, Thomas S. Huang, and Jiayu Zhou (2016). "Robust Convex Clustering Analysis". In: ICDM 2016: Proceedings of the 16th IEEE International Conference on Data Mining. Ed. by Francesco Bonchi, Josep Domingo-Ferrer, Ricardo Baeza-Yates, Zhi-Hua Zhou, and Xindong Wu. Barcelona, Spain, pp. 1263–1268.
- Weylandt, Michael (2019). "Splitting Methods for Convex Bi-Clustering and Co-Clustering". In: DSW 2019: Proceedings of the 2nd IEEE Data Science Workshop. Ed. by Georgios B. Giannakis, Geert Leus, and Antonio G. Marques. Minneapolis, Minnesota: IEEE.
- Weylandt, Michael, John Nagorski, and Genevera I. Allen (2019+). "Dynamic Visualization and Fast Computation for Convex Clustering via Algorithmic Regularization". *Journal of Computational and Graphical Statistics*.
- Wu, Chong, Sunghoon Kown, Xiaotong Shen, and Wei Pan (2016). "A New Algorithm and Theory for Penalized Regression-based Clustering". *Journal of Machine Learning Research* 17.188, pp. 1–25.

References v

Zhu, Changbo, Huan Xu, Chenlei Leng, and Shuicheng Yan (2014). "Convex Optimization Procedure for Clustering: Theoretical Revisit". In: NIPS 2014: Advances in Neural Information Processing Systems 27. Ed. by Zoubin Ghahramani, Max Welling, Corinna Cortes, Neil D. Lawrence, and Killian Q. Weinberger. Montréal, Canada: Curran Associates, Inc., pp. 1619–1627.