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Clustering: The Good, The Bad, and The Ugly

Existing methods for clustering:

- K-Means
- Good: Fast
- Bad: Non-Convex
- Ugly: How many clusters?

- Hierarchical Clustering
- Good: Fast, nice visualizations
- Bad: Many variants
- Ugly: How many clusters?

- Others: spectral clustering, GMM+EM,
DBSCAN, etc.




Consider the Humble Dendrogram

Dendrograms:
Hierarchical Clustering [Complete Linkage] . Easi ly— understood

ubiquitous
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Convex Clustering

Convex clustering (Hocking et al. 2011; Lindsten et al. 2011; Pelckmans et al. 2005):

. 1 !
U = argmin iHX —U|jf + AZ wii||Ui. — Uji|lq

UERNxp =

i#]

Observations are clustered together if U;. = 0;.
Estimated centroids O are close to original data and fused together

Convexity implies:

- Global optimality + efficient algorithms
- Good statistical properties

A controls number of clusters smoothly



Convex Clustering: Solution Path
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Convex Clustering: Related Work

Related Work:

- Basic Framework: Hocking et al. (2011), Lindsten et al. (2011), and Pelckmans
et al. (2005)

- Algorithms: Chen et al. (2015), Chi and Lange (2015), Ho et al. (2019), Panahi
et al. (2017), and Sun et al. (2018)

- Two-Way Matrix / Bi-Clustering: chi et al (2017) and Weylandt (2019)

+ Multi-way Tensor / Co-Clustering: chi et al. (2018)

- Consistency: Panahi et al. (2017), Radchenko and Mukherjee (2017), Tan and
Witten (2015), and Zhu et al. (2014)

- Non-Convex Penalties: Marchetti and Zhou (2014), Pan et al. (2013), Shah
and Koltun (2017), and Wu et al. (2016)

- Robustness: Wang et al. (2016)

- Feature Selection: wang et al. (2018)

- Generalized Losses: wang and Allen (2019+)



Convex Clustering: Related Work

Related Work:
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et al. (2005)

- Algorithms: Chen et al. (2015), Chi and Lange (2015), Ho et al. (2019), Panahi
et al. (2017), and Sun et al. (2018)

- Two-Way Matrix / Bi-Clustering: chi et al (2017) and Weylandt (2019)

+ Multi-way Tensor / Co-Clustering: chi et al. (2018)

- Consistency: Panahi et al. (2017), Radchenko and Mukherjee (2017), Tan and
Witten (2015), and Zhu et al. (2014)

- Non-Convex Penalties: Marchetti and Zhou (2014), Pan et al. (2013), Shah
and Koltun (2017), and Wu et al. (2016)

- Robustness: Wang et al. (2016)

- Feature Selection: wang et al. (2018)

- Generalized Losses: wang and Allen (2019+)

Despite all this, relatively little adoption: speed, graphics, and
software support 7
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Convex Clustering: Splitting Algorithms

Simplified form:

]

arg min EHX — |+ A[IDU]lrow,q

UcRNxp &
P(DU)

ADMM for Convex Clustering (Chi and Lange 2015; Weylandt et al. 2019+):
1. URHD) = (1 + pD™D)~"(X 4 D(V(R) — (M)
2. V) = prox, ,, py (DU 4 Z(R))
3. z(R+1) — 7(R) + p(Du(kJﬂ) _ V(k+1))

Fastest general purpose solver for convex clustering, but still slow ...

- D-matrix has () rows but large nullspace

- Fusion penalty non-separable and induces no (computational)
sparsity

- O(n?p) variables



Difficulties of Convex Clustering Optimization

Dendrogram recovery:

- Need to solve at (at least) n — 1 different X values

- Don't know what those are a priori



Difficulties of Convex Clustering Optimization

Dendrogram recovery:

- Need to solve at (at least) n — 1 different X values

- Don't know what those are a priori

Grid search expensive

Not amenable to homotopy (path-following) algorithms
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Local and Global Accuracy

Two (contrary?) aims:

- Local Accuracy: optimization convergence at all A

- Global Accuracy: solution at dense A grid
Standard optimization techniques give local accuracy
Relatively little consideration of global accuracy

Global accuracy often more interesting: variable selection order,
dendrograms, etc.
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It's Getting Hot In Here! Advantages of Warm Starting

Useful trick: warm starts!
If solving for grid of A, use U,,_, to start algorithm for Uy,

Starting near solution reduces number of iterations needed to
converge

Second-order benefit: algorithms have improved local convergence
rates near solutions

1



Some Mild Heresy

Warm-Started ADMM:

- Initialize [ = 0, \; = ¢, V(© = 7(0) = DX
- Repeat until [[V®|| = o:
- Repeat until convergence:
(i) U+D = (14 D™D)~" (X 4 DT(V(R) — z(A)y)
(||) V(rR+1) — prox)\[P(A) (DU(*H»'\) + Z(k))
(iii) Z(+) = z(R) L pyk+1) _ y(k+D)
(iv) R:=k+1
- Store Uy, = U®
- Update regularization: [:= 1+ 1, X\ := \_q x t

- Return {U,} as the regularization path
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Some Mild Heresy

CARP Algorithm:

- Initialize [ = 0, \; = ¢, V(O = 7(0) = DX
- Repeat until [[V®)|| = o:
+ Do Once:
(i) U+ = (14 D'D)~" (X + DT(V(R) — z(R)y)
(ii) V(e+1) = ProXy e, (DUCr+D) 4 Z(k))
(iii) Z(+N) = z(R) L pyk+1) _ y(k+D)
(iv) R:=k+1
- Store Uy, = U®
- Update regularization: [:= 1+ 1, A\ := \_q x t

- Return {U,} as the algorithmic regularization path

CARP: Convex Clustering via Algorithmic Regularization Paths



Algorithmic Regularization

Algorithmic Regularization: Single Optimization Step then Update A




Algorithmic Regularization

Algorithmic Regularization: Single Optimization Step then Update A

Faster, but can it work?



Eppur si muove!

Path: tis small

Path

14



Eppur si muove!

Algorithmi Path: tis small 22D

Yes - it seems to work!

Intuition: Warm-starting at previous iteration gets “good enough”
answer in one-step

Practical Advantages: Same number of iterations spent at many
more A = finer grid!

14



A Convergence Theorem

Theorem (Informal): Global Recovery of Entire Path

As the step-size t goes to zero, CARP recovers the entire solution
path (primal and dual):
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A Convergence Theorem

Theorem (Informal): Global Recovery of Entire Path

As the step-size t goes to zero, CARP recovers the entire solution
path (primal and dual):

max {supiréf HU('?) — LAJAH 7SUPirAnC HU( U/\H} L“O% .
A kR
otk _ 3 . i
max suplr,:f Z\Y — 7, ,Suplr;f z0_7, —> .
A k

Very strong convergence - global and local + primal and dual

The whole path and nothing but the path



Sketch of Proof

Key elements of proof:

- Problem is strongly convex (always) so ADMM converges linearly
(Deng and Yin 2016)
- Solution path is Lipschitz so |80, /0| is bounded above

Proof Sketch:
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Sketch of Proof

Key elements of proof:
- Problem is strongly convex (always) so ADMM converges linearly
(Deng and Yin 2016)
- Solution path is Lipschitz so |80, /0| is bounded above
Proof Sketch:

- At initalization:

U@ — 0| < Le by Lipschitz-ness of Uy
- After one step:

U -0 || < cJUO -0 || < U@ -0, ||4+c||0—0¢|| < cLe+c(t—1)e
- Iterating:

k—1 ,
A~ C I
U — Q|| < cFLe+ L(E— 1)ett EH: (f)

- Show this goes to zero for all k simultaneously as t,e — 0 16



Authors and Genes

Two test data sets:

- Authors € R81%8%: stop-word counts from 4 authors

- TCGA € R*¥%33: gene expression from 3 breast cancer subtypes
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CBASS: Convex Bi-Clustering

Similar modification to Chi et al. (2017) or Weylandt (2019) yields

CBASS:
Convex BiClustering via Algorithmic Regularization with Small Steps

Also in clustRviz



Future Work

Where else can we use Algorithmic Regularization:

- Signal Approximation
- “Big n Problems”

- 4, (Tikhonov) Regularization

19



Future Work

Where else can we use Algorithmic Regularization:

- Signal Approximation
- “Big n Problems”
- 4, (Tikhonov) Regularization

Extensions of Algorithmic Regularization:

- Inexact Updates

- Multi-Block

- Non-Strongly Convex

- “Nice” Non-Convex

- Stochastic / Parallel Updates

19



One Fun Thing

Presidential speeches data set (n = 44, p = 75):

- Relative word frequency of top 75 words from inaugurations,
State of the Union, and other famous speeches
- Words are stemmed and frequencies are log-transformed

20
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One Fun Thing

Paths:



One Fun Thing

Outlier:

- Republican
- Known for pro-business and anti-immigration policies
- Tried to upend traditional alliances

- First president elected from previous (non-traditional)
background

- Campaigned on return to past glories

21
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Conclusions

W., Nagorski, and Allen: “Dynamic Visualization and Fast Computation
for Convex Clustering via Algorithmic Regularization " JCGS 2019+.

O github.com/DataSlingers/clustRviz

Thank you!
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Conclusions

W., Nagorski, and Allen: “Dynamic Visualization and Fast Computation
for Convex Clustering via Algorithmic Regularization " JCGS 2019+.

- Algorithmic Regularization Meta-Algorithm: One Optimization
Step per A
- Faster Computation & More Accurate Global Structure
- CARP and CBASS Algorithms for Clustering and Bi-Clustering
- First global convergence result for one-step schemes
- Convex Clustering:
- Strong Statistical Guarantees
- Fast(er) Computation + Dynamic & Iteractive Visualizations!

O github.com/DataSlingers/clustRviz

Thank you!
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