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NETWORK DATA

Ubiquitous Network Data: telecommunications, social media,
neuroscience, sensor networks, transportation, etc.

Three types of network data:

• Networks as models of
complex phenomena
(“graphical models”)

• Observed network(s)
(“network science”)

• Data observed on a network
(“graph signal processing”)

Today: contributions to network science and graph signal processing

2



NETWORK DATA

Ubiquitous Network Data: telecommunications, social media,
neuroscience, sensor networks, transportation, etc.

Three types of network data:

• Networks as models of
complex phenomena
(“graphical models”)

• Observed network(s)
(“network science”)

• Data observed on a network
(“graph signal processing”)

Today: contributions to network science and graph signal processing

2



NETWORK DATA

Ubiquitous Network Data: telecommunications, social media,
neuroscience, sensor networks, transportation, etc.

Three types of network data:

• Networks as models of
complex phenomena
(“graphical models”)

• Observed network(s)
(“network science”)

• Data observed on a network
(“graph signal processing”)

Today: contributions to network science and graph signal processing

2



NETWORK DATA

Ubiquitous Network Data: telecommunications, social media,
neuroscience, sensor networks, transportation, etc.

Three types of network data:

• Networks as models of
complex phenomena
(“graphical models”)

• Observed network(s)
(“network science”)

• Data observed on a network
(“graph signal processing”)

Today: contributions to network science and graph signal processing

2



NETWORK DATA

Ubiquitous Network Data: telecommunications, social media,
neuroscience, sensor networks, transportation, etc.

Three types of network data:

• Networks as models of
complex phenomena
(“graphical models”)

• Observed network(s)
(“network science”)

• Data observed on a network
(“graph signal processing”)

Today: contributions to network science and graph signal processing

2



COMMUNITY DETECTION

Community detection - dividing an observed network into
meaningful groups (“communities”)

Very well studied problem (Levina, Zhu, Amini, Vershynin, Bickel …) 3



COARSE ALIGNMENT VIA GRAPH SIGNAL PROCESSING

Graph alignment:

• Input: two graphs G1,G2
• Output: Mapping between V1,V2 so that the graphs are (nearly)
“the same” under some metric

Can require exact alignment or allow inexact matching (possibly on
different size graphs)

Coarse graph alignment:

• Input: two graphs G1,G2
• Output: Communities in G1,G2 and mapping between them

Goal: Coarse graph alignment using noisy graph signals on G1,G2
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COARSE GRAPH ALIGNMENT VIA GRAPH SIGNAL PROCESSING

Goal: Coarse graph alignment using noisy graph signals on G1,G2
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Solution: graph-regularized sparse multi-rank PLS (i.e., PCA on
correlations)
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EXAMPLE: COARSE ALIGNMENT VIA GRAPH SIGNAL PROCESSING
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CONGA VIA SPARSE GRAPH PLS

Model: two graphs G1, G2 with corresponding signals

• Graphs have “paired” community structure
• If community of G1 reflects signal, so does corresponding in G2
• No other structural assumptions on G1,G2

Solution: Graph-Regularized Sparse Multi-Rank PLS

argmax
U,V∈V

In1+α1L1
n1×K ×V

In2+α2L2
n2×K

Tr(U⊤X⊤1 X2V)− λ1P1(U)− λ2P2(V)

Decompose XT1X2 into two parts U, V such that:

• correlation between signals
• in a way that respects graph structure
• and selects a sparse set of nodes

Sparsity + Orthogonality ≈ Non-overlapping support

Paired columns of U,V give corresponding community membership
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ALGORITHM: MANIFOLD OPTIMIZATION

Sparse Graph-Smooth PLS Algorithm
1. Construct Graph Laplacians L1, L2 and associated smoothing
matrices S1 = In1 + α1L1, S2 = In2 + α2L2

2. Initialize Û, V̂ to the leading K singular vectors of X⊤1 X2
3. Repeat until convergence:

Û = argmin
U∈convVS1

n1×K

−Tr(U⊤X⊤1 X2V̂) + λ1P1(U)

V̂ = argmin
V∈convVS2

n2×K

−Tr(V⊤X⊤2 X1Û) + λ2P2(V)

4. Return Û and V̂

Application of Multi-Rank Regularized PCA (Weylandt, 2019) to PLS

Solve Û, V̂-subproblems via Manifold ADMM (Kovnatsky et al., 2016)
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ALGORITHM: GREEDY VARIANT

Sparse Graph-Smooth PLS Algorithm (Greedy Variant for Large
Graphs)
1. Construct Graph Laplacians and smoothing matrices with
leading eigenvalues ℓ1 = λmax(S1) and ℓ2 = λmax(S2)

2. Initialize C1 := X⊤1 X2
3. For k = 1, . . . K:

3.1 Initialize ûk, v̂k to the leading singular vectors of Ck
3.2 Repeat until convergence:

3.2.1 iterate u-update: ûk ∝ proxλ1
ℓ1
P1(·)

(
uk + ℓ−1

1 (Ckv̂k − S1uk)
)

3.2.2 iterate v-update: v̂k ∝ proxλ2
ℓ2
P2(·)

(
vk + ℓ−1

2
(
C⊤k ûk − S2vk

))
3.3 Set Ck+1 := Ck −

Ck v̂kûTkCk
ûTkCk v̂k

4. Return {ûk}Kk=1 and {v̂k}Kk=1

Combines Rank-1 Sparse and Functional PCA (Allen and Weylandt,
2019) with Schur Deflation (Weylandt, 2019) 9



THEORETICAL PROPERTIES

Regularity and Optimality Guarantees
The CONGA problem is well-posed

1. |U∗
·k∥S1 is either 0 or 1 for all k. Similarly for V∗.

2. If (U∗,V∗) ̸= (0, 0), the SGPLS solution (U∗,V∗) depends
smoothly on all (non-zero) regularization parameters.

Furthermore, the proposed algorithms are well-behaved:

1. Step 3.2.1 of the greedy algorithm converges to a stationary point
of

argmin
u:u⊤(I+α1L1)u≤1

1
2∥Ckv̂k − u∥22 + λ1P1(u) +

α1
2 u

⊤L1u

Furthermore, if P1 is convex, the convergence is monotone, at an
O(1/K) rate, and to a global solution. Similar for Step 3.2.2

2. If P1,P2 are both convex, then (ûk, v̂k) returned by each step 3(b)
of the greedy algorithm is both a coordinate-wise global
maximum (Nash point) and a stationary point of SGPLS.

10
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CONGA VIA SPARSE GRAPH PLS

Simulation:

• G1: 4-block SBM (25, 25, 25, 25) with p = 0.95,q = 0.2
• G2: 4-block SBM (40, 30, 25, 55) with p = 0.95,q = 0.2
• m = 1000 signals: SNRG1 = 0.2, SNRG2 = 0.163
• Oracle tuning for all methods
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CONGA VIA SPARSE GRAPH PLS
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CONCLUSIONS

Coarse Network Alignment:

• Community detection from multiple unaligned graphs
• Identifies matched communities based on common signals

Coarse Network Alignment: ArXiv 2104.02810

Thank you!

12



CONCLUSIONS

Coarse Network Alignment:

• Community detection from multiple unaligned graphs
• Identifies matched communities based on common signals

Coarse Network Alignment: ArXiv 2104.02810

Thank you!

12



CONCLUSIONS

Coarse Network Alignment:

• Community detection from multiple unaligned graphs
• Identifies matched communities based on common signals

Coarse Network Alignment: ArXiv 2104.02810

Thank you!

12



CONCLUSIONS

Coarse Network Alignment:

• Community detection from multiple unaligned graphs
• Identifies matched communities based on common signals

Coarse Network Alignment: ArXiv 2104.02810

Thank you!

12



REFERENCES

Allen, Genevera I. and Michael Weylandt (2019). “Sparse and Functional Principal
Components Analysis”. In: DSW 2019: Proceedings of the 2nd IEEE Data Science
Workshop. Ed. by George Karypis, George Michailidis, and Rebecca Willett.
Minneapolis, Minnesota: IEEE, pp. 11–16.

Kovnatsky, Artiom, Klaus Glashoff, and Michael M. Bronstein (2016). “MADMM: A Generic
Algorithm for Non-Smooth Optimization on Manifolds”. In: ECCV 2016: Proceedings
of the 14th European Conference on Computer Vision. Ed. by Bastian Leibe, Jiri Matas,
Nicu Sebe, and Max Welling. Vol. 9909. Lecture Notes in Computer Science. Springer,
pp. 680–696.

Weylandt, Michael (2019). “Multi-Rank Sparse and Functional PCA: Manifold
Optimization and Iterative Deflation Techniques”. In: CAMSAP 2019: Proceedings of
the 8th IEEE Workshop on Computational Advances in Multi-Sensor Adaptive
Processing. Ed. by Geert Leus and Antonio G. Marques. Le Gosier, Guadaloupe,
pp. 500–504.

13


