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Objectives

Principal Components Analysis of Network Data:
• Preserve Network Structure
• Computational AND Statistical Efficiency
• Flexibility - Capture Arbitrary Low-Rank Factors
• Nestability - Capture Multiple Principal Components

Multiple Network Data

Applications:
• Neuroscience (Zhang et al., NeuroImage, 2019)

• Social Dynamics (Eagle et al., PNAS, 2009)

• International Development (Hafner-Burton et al., International Organization, 2009)

• Transportation (Cardillo et al., Sci. Reports, 2013)

Network Series: ordered set of networks on the same nodes
Special Case of “Multilayer Networks” (Kivelä et al., J. Complex Networks, 2014)

Related Work

Clustering:
• Sundar et al., NeurIPS, 2017; Mantziou et al. (2022+);

Signorelli and Wit, Stat. Mod., 2020
Generative Modeling:
• Crane, Bernoulli, 2015; Crane, AoAP, 2016; Gollini

JCGS, 2016; Durante et al., JASA, 2017
Two-Sample Testing:
• Ginestet et al., AoAS, 2017
Scalar-on-Network Regression:
• Relión et al., AoAS, 2019; Guha and Rodriguez, JASA,

2021
Time Series Models:
• Hanneke et al., EJS, 2010; Chen and Chen, 2019+
Joint Embeddings:
• Wang et al., PAMI, 2021
Tensor Factorizations - Statistics:
• Sun et al., JRSS-B, 2017; Anandkumar et al., JMLR,

2017; Wang et al., PAMI, 2021
Tensor Factorizations - Applied Math:
• Sorensen and De Lathauwer, SIMAX, 2015
• (Lr, Lr, 1)-Multilinear Rank Decomposition

Network PCA via Tensor Decompositions

Numerical representation: given T networks on p vertices each:
• Identify edges for each network
• Create a p× p adjacency matrix
• Align into a p× p× T tensor

Symmetric rank-r variant of CP decomposition

Algorithm

Alternating maximization: u and V-subproblems tractable!

arg min
V,u,d

‖X − dV ◦V ◦ u‖2
F ⇐⇒ arg max

V,u
〈X ,V ◦V ◦ u〉

Semi-Symmetric Tensor Power Method
• Initialize u0 to be random p-vector
• Repeat until convergence:
• Vk = leading r-eigenvectors(X ×̄3 uk−1)
• uk ∝ X ×1 Vk ×2 Vk

• Return: Principal Matrix V∞ ◦V∞ and Loadings u∞
Extension of power method for eigenvalue calculations

Advantages: Fast; Streaming, Big-data, Sparse etc.
Disadvantages: Non-Convex; Mildly Sensitive to Initialization

Consistency of Semi-Symmetric Tensor PCA

Let X = dV∗ ◦V∗ ◦ u∗ + E for σ-sub-Gaussian E . Then, with good initialization, the semi-symmetric tensor power method
applied to X recovers u∗ and V∗ at the same rates as classical PCA with high probability:

min
O∈Vk×k

‖V∗ − V̂O‖2√
pr
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and min

ε∈{±1}
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T
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d

Furthermore the statistical convergence is linear (fast) before hitting the “noise barrier.”

Proof Outline

Tools: Davis-Kahan theorem + Iteration

V-update:

‖ sin∠(V∗,V(k+1))‖F ≤ 2
∣∣∣∣∣∣∣1− cos∠(u(k+1),u∗)

∣∣∣∣∣∣∣ +
2 ‖E‖r-op

d
u-update:

| sin∠(u∗,u(k+1))| ≤ 2
∣∣∣∣∣∣∣1− cos∠(V∗,V(k))4

∣∣∣∣∣∣∣ +
8r2 ‖E‖r-op

d
For small angles 2|1− cos θ| < | sin θ| ⇐ initialization!

Chained iteration shows:
Error at Iteration k ≈ ckE1 + E2/(1− c)

where:
• E1 is initialization error (depends only on ∠(u0,u∗))
• E2 is stochastic error (depends on noise ‖E‖r-op & signal d)
• c < 1 depends on initialization quality

Implications:
• Statistical consistency
• Geometric convergence to “noise range”
• Possibly slow (or looping) after that
Similar results for sparse regression by Fan et al. (AoS, 2018)
All this despite non-convexity: analyze algorithm not problem!

Comparison with Naive PCA

Does not enforce rank-r structure on “principal network”

SS-TPCA is equivalent to
arg max

u,v
uTM3(X )v such that rank(unvec(v)) = r

Variant of Truncated Power Method for Sparse PCA (Yuan
and Zhang, JMLR 2013) with “unvec-rank” instead of sparsity:

Method Dimension u-MSE v-MSE
Classical PCA T × p σ

√
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√
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d

Vectorize + PCA T ×
p
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√
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d

• Same rate as classical PCA (when r = 1)
• Better than naïve (vectorization) by factor of √p� r

Connection to “unvec-rank” constrained PCA highlights key
role of Davis-Kahan in theoretical analysis

Application: SCOTUS Voting

Each term SCOTUS decides ≈ 80 cases:
• Weighted, undirected network based on co-voting
• By “seat” (AJ7 = Ginsburg = Barrett), not by Justice
Data: SCOTUSblog annual “stat pack” - OT 1995 to OT 2020

9× 9 pairs × 25 terms ≡ X ∈ R9×9×25

Semi-Symmetric PCA as a Flexible Pattern Recognition Tool:
• Raw X - major patterns (trends)
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The majority of SCOTUS cases are decided (nearly) unanimously
Baseline (Mean) Court Behavior

• Centered X - variance components (covariance patterns)
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The most significant source of divided rulings is the familiar left/right split
First Principal Component of Court Behavior

• Differenced X - change-point identification (cusum)
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The most significant change in court dynamics is O'Connor / Alito (AJ2) seat
First Principal Component of Tensor CUSUM Analysis
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