
Multivariate Analysis of Large-Scale Network

Series

Michael Weylandt

2022-05-09

Department of Mathematics

University of Houston

Houston, TX USA

michael.weylandt@ufl.edu

https://michaelweylandt.github.io/

IC Postdoctoral Research Fellow

University of Florida Informatics Institute



Network Data

Ubiquitous Network Data: telecommunications, social media,

neuroscience, sensor networks, transportation, etc.

Three types of network data:

• Networks as models of

complex phenomena

(“graphical models”)

• Observed network(s)

(“network science”)

• Data observed on a

network (“graph signal

processing”)

Today: contributions to network science on multiple networks
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Multiple Network Data

Applications:

• Neuroscience (Zhang et al., NeuroImage, 2019)

• Social Dynamics (Eagle et al., PNAS, 2009)

• International Development (Hafner-Burton et al., International Organization, 2009)

• Transportation (Cardillo et al., Sci. Reports, 2013)

Network Series: an ordered set of network observed on the same nodes

Special Case of “Multilayer Networks” (Kivelä et al., J. Complex Networks, 2014)
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Selected Related Work

Clustering:

• Sundar et al., NeurIPS, 2017; Mantziou et al. (2022+); Signorelli

and Wit, Stat. Mod., 2020

Generative Modeling:

• Crane, Bernoulli, 2015; Crane, AoAP, 2016; Gollini JCGS, 2016;

Durante et al., JASA, 2017

Two-Sample Testing:

• Ginestet et al., AoAS, 2017

Scalar-on-Network Regression:

• Relión et al., AoAS, 2019; Guha and Rodriguez, JASA, 2021

Time Series Models: Hanneke et al., EJS, 2010; Chen and Chen, 2019+

Joint Embeddings:

• Wang et al., PAMI, 2021
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Multivariate Methods for

Multiple Networks
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Principal Components Analysis

Principal Components Analysis:

• Exploratory Data Analysis

• Pattern Recognition

• Dimension Reduction

• Data Visualization
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Principal Components Analysis

Data matrix: X ∈ Rn×p

• n observations (rows)

• p features (columns)

X ≈ du vT

Decompose X into a major pattern v and how much the pattern

contributes to each observation u

All-purpose pattern recognition tool:

• Raw X - major patterns (trends)

• Centered X - variance components (covariance patterns)

• Differenced X - change-point identification (cusum analysis)
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Tensor Analysis

Goal: Apply PCA to multiple networks

Numerical representation: given T networks on p vertices each:

• Identify edges for each network

• Create a p × p adjacency matrix

• Align into a p × p × T tensor
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Tensor Decompositions

Given p × p × T tensor, how to break it into “principal components”?

• Tucker Factors: Optimal for compression; limited interpretation

• CP Factors: Method of choice for PCA; (orthogonal) distinct factors

Regularized variants available (Allen, AISTATS, 2012)

Both well-studied: neither uses the network structure of our tensor

Semi-Symmetric Tensor Decomposition Needed

Figures from Kolda and Bader (SIREV, 2009)

8



Tensor Decompositions

Given p × p × T tensor, how to break it into “principal components”?

• Tucker Factors: Optimal for compression; limited interpretation

• CP Factors: Method of choice for PCA; (orthogonal) distinct factors

Regularized variants available (Allen, AISTATS, 2012)

Both well-studied: neither uses the network structure of our tensor

Semi-Symmetric Tensor Decomposition Needed

Figures from Kolda and Bader (SIREV, 2009)

8



Tensor Decompositions

Given p × p × T tensor, how to break it into “principal components”?

• Tucker Factors: Optimal for compression; limited interpretation

• CP Factors: Method of choice for PCA; (orthogonal) distinct factors

Regularized variants available (Allen, AISTATS, 2012)

Both well-studied: neither uses the network structure of our tensor

Semi-Symmetric Tensor Decomposition Needed

Figures from Kolda and Bader (SIREV, 2009)

8



Tensor Decompositions

Given p × p × T tensor, how to break it into “principal components”?

• Tucker Factors: Optimal for compression; limited interpretation

• CP Factors: Method of choice for PCA; (orthogonal) distinct factors

Regularized variants available (Allen, AISTATS, 2012)

Both well-studied: neither uses the network structure of our tensor

Semi-Symmetric Tensor Decomposition Needed

Figures from Kolda and Bader (SIREV, 2009)

8



Semi-Symmetric Tensor Decomposition

Given a series of networks, arranged as a p × p × T tensor, decompose

into a “principal network” and loading vector

Goals:

• Preserve Network Structure

• Computational AND Statistical Efficiency

• Flexibility - Capture Arbitrary Low-Rank Factors

• Nestability - Capture Multiple Principal Components
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Semi-Symmetric Tensor PCA

Semi-Symmetric Generalization of the CP decomposition:

X ≈
k∑

i=1

di Vi ◦ Vi ◦ ui

where Vi ∈ Rp×ri is orthogonal, ui ∈ RT .

(r1, . . . , rk)-SS-TPCA

Between classical CP and Tucker:

• Allows for components of rank ≥ 1 (RDPG: Athreya et al., JMLR 2018)

• Still has a diagonal core (viewed as Tucker)

• Restriction of a very flexible CP: repeated u factors

Rank-1 model applied in multi-subject neuroimaging to find PC factors

correlated with behavioral traits (Zhang et al., NeuroImage 2019)
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Computing the SS-TPCA

Tensor factors are, in general, NP-Hard to compute (Hillar and Lim, J. ACM, 2013)

We define our estimator computationally rather than by optimality

Best approximation in Frobenius (`2) norm:

arg min
V,u,d

‖X − d V ◦ V ◦ u‖2
F ⇐⇒ arg max

V,u
〈X ,V ◦ V ◦ u〉

Alternating maximization approach: u and V subproblems are tractable!
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Computing the SS-TPCA

Semi-Symmetric Tensor Decomposition (Rank-k Case)

• Initialize u0 to be random p-vector

• Repeat until convergence:

• Vk = leading r -eigenvectors(X ×̄3 uk−1)

• uk ∝ X ×1 Vk ×2 Vk

• Return: Principal Matrix V∞ ◦ V∞ and Loading Vector u∞

Extension of power method for eigenvalue calculations

Advantages:

• Fast

• Adaptable to streaming, big-data, sparse networks etc. in usual ways

• Vk -Update takes advantage of semi-symmetric structure

Disadvantages:

• Non-Convex

• Mildly Sensitive to Initialization

12
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Statistical Consistency

“Spiked Covariance / Low-Rank Mean” Model:

X = d V∗ ◦ V∗ ◦ u∗ + E

Does the Semi-Symmetric Tensor Power Method recover u∗ and V∗?

Statistical properties: do our estimates reflect the population model?

(Not interested in optimally (over-)fitting the observed data)

Challenges:

• Non-convex problem

• Initialization-dependent solution

• Algorithm not guaranteed to reach global optimum

• Limited theoretical tools:

• Adversarial analysis of noisy power method (Hardt and Price, NeurIPS, 2014)

• Davis-Kahan theorem (Yu et al., Biometrika, 2015)

• Control of û, v̂ from PCA on X̂ = X∗ + E in terms of ‖E‖op

• Recovery up to orthogonal rotation
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Selected Related Work

Statistics:

• Sun et al., JRSS-B, 2017:

• Statistical consistency of 3-way tensor decompositions without

symmetry

• Anandkumar et al., JMLR, 2017:

• Statistical consistency of fully-symmetric 3-way tensor decomposition

• Wang et al., PAMI, 2021:

• Optimization convergence of a closely-related greedy algorithm

• Asymptotic (Large Sample) Consistency for Erdő-Renyi graphs

Applied Math:

• Sorensen and De Lathauwer, SIMAX, 2015

• Considered our model as a (Lr , Lr , 1)-Multilinear Rank

Decomposition

• No “statistical” theory
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Statistical Consistency

Theorem (Semi-Formal)

Suppose X = d V∗ ◦ V∗ ◦ u∗ + E where

• u∗ is a unit-norm T -vector

• V∗ is a p × r orthogonal matrix satisfying VT
∗ V∗ = Ir×r

• d ∈ R>0 is a measure of signal strength

• E is a semi-symmetric noise tensor each free element of which is

independently σ-sub-Gaussian.

With sufficiently good iteration, our Algorithm applied to X satisfies

the following with high probability:

min
O∈Vk×k

‖V∗ − V̂O‖2√
pr

.
σr
√
T

d
and min

ε∈{±1}

‖u∗ − ûε‖2√
T

.
σr
√
p

d

Furthermore the statistical convergence is linear (fast) before hitting

the “noise barrier”
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Proof Outline

Davis-Kahan theorem applied repeatedly + iteration:

V-update:

‖ sin∠(V∗,V(k+1))‖F ≤ 2
∣∣∣1− cos∠(u(k+1), u∗)

∣∣∣+
2 ‖E‖r -op

d

u-update:

| sin∠(u∗, u
(k+1))| ≤ 2

∣∣∣1− cos∠(V∗,V
(k))4

∣∣∣+
4r ‖E‖r -op

d
+

2r2 ‖E‖2
r -op

d2

Surprisingly tricky deal with normalization of u updates

=⇒ apply DK to λũk ◦ ũk − u∗ ◦ u∗ for suitable λ

To combine these results, note that for small angles 2|1− cos θ| < | sin θ|

Assume we are in this range (≈ [0, 53◦]) via good initialization (actually a

bit smaller to deal with noise)

Chain + iterate to desired bound
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Convergence Rate

More detailed work shows that:

Error at Iteration k ≈ ckE1 + E2/(1− c)

where

• E1 is initialization error (depends only

on ∠(u0, u∗))

• E2 is stochastic error (depends on

noise ‖E‖r -op & signal d)

• c < 1 depends on initialization quality

Implications:

• Geometric convergence to “noise range”

• Possibly slow (or looping) after that

Similar results obtained for sparse regression by Fan et al. (AoS, 2018)

All this despite non-convexity: analyze algorithm not problem!
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Is this just PCA?

Weighted networks + (real) inner product - perform a spectral

decomposition in this space (Eaton, 1983)?

Does not enforce rank-r structure on “principal network:” SS-TPCA is

equivalent to

arg max
u,v

uTM3(X )v such that rank(unvec(v)) = r

Variant of Truncated Power Method for Sparse PCA (Yuan and Zhang,

JMLR 2013) with “unvec-rank” instead of sparsity constraint
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Comparison with Classical PCA

Method Dimension u-MSE v -MSE

Classical PCA T × p
σ
√
p

d
σ
√
T

d

Vectorize + PCA T ×
(
p
2

)
σp
d

σ
√
T

d

SS-TPCA p × p × T
σr
√
p

d
σr
√
T

d

Tensor approach:

• Same rate as classical PCA (when r = 1)

• Better than näıve (vectorization) approach by factor of
√
p � r

Connection to “unvec-rank” constrained PCA highlights key role of

Davis-Kahan in theoretical analysis

O(
√

log T/T ) terms omitted
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Practicalities

Initialization:

• For many network problems, signal is roughly constant (or at least

positive)

• Stable initialization: u0 = 1/
√
T

• Performs particularly well for trend-finding and change-point

• Random (re-)initialization works well for hardest problems

• See simulations in paper

Deflation: X t ⇐ X t−1 ×1 [Ip − V̂ ◦ V̂] ×2 [Ip − V̂ ◦ V̂] ×3 [I− ûûT ]

• Removes estimated signal: X t ×1 Vt ◦ Vt = X t ×̄3 ut = 0

• ‖X t‖ > ‖X t−1‖; may not lower rank (Stegman and Comon, Lin. Alg. Appl., 2010)

Rank Selection:

• Data-Driven or BIC used to select K (Sedighin, J. Spec. Top. Sig. Proc., 2021)

• Selecting r too high usually harmless

20
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Application: SCOTUS Voting









Can we use network analysis to identify voting

patterns among SCOTUS Justices?

23



SCOTUS Network Data

Each term SCOTUS decides ≈ 80 cases:

• Create a weighted, undirected network based on co-voting1

• Analyze by “seat” (AJ7 = Ginsburg = Barrett), not by Justice

Data: SCOTUSblog annual “stat pack” - OT 1995 to OT 2020

9× 9 pairs × 25 terms ≡ X ∈ R9×9×25

1We consider agreement in the judgement, not in reasoning. 24
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Example - OT 2001
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CJ − Rehnquist

AJ1 − Stevens

AJ2 − O'Connor

AJ3 − Scalia

AJ4 − Kennedy

AJ5 − Souter
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AJ7 − Ginsburg

AJ8 − Breyer
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CJ − Rehnquist

AJ1 − Stevens

AJ2 − O'Connor

AJ3 − Scalia

AJ4 − Kennedy

AJ5 − Souter

AJ6 − ThomasAJ7 − Ginsburg

AJ8 − Breyer

Data from the SCOTUSBlog Stat Pack

October Term 2001
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Semi-Symmetric PCA as a Flexible Pattern Recognition Tool

Semi-Symmetric PCA as a Flexible Pattern Recognition Tool:

• Raw X - major patterns (trends)

• Centered X - variance components (covariance patterns)

• Differenced X - change-point identification (cusum analysis)

26
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AJ6

AJ7
AJ8

Data from the SCOTUSBlog Stat Pack

The majority of SCOTUS cases are decided (nearly) unanimously
Baseline (Mean) Court Behavior



Semi-Symmetric PCA as a Flexible Pattern Recognition Tool

Semi-Symmetric PCA as a Flexible Pattern Recognition Tool:

• Raw X - major patterns (trends)

• Centered X - variance components (covariance patterns)
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Data from the SCOTUSBlog Stat Pack

The most significant source of divided rulings is the familiar left/right split
First Principal Component of Court Behavior



Semi-Symmetric PCA as a Flexible Pattern Recognition Tool

Semi-Symmetric PCA as a Flexible Pattern Recognition Tool:

• Raw X - major patterns (trends)

• Centered X - variance components (covariance patterns)

• Differenced X - change-point identification (cusum analysis)
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Semi-Symmetric PCA as a Flexible Pattern Recognition Tool

Semi-Symmetric PCA as a Flexible Pattern Recognition Tool:

• Raw X - major patterns (trends)

• Centered X - variance components (covariance patterns)

• Differenced X - change-point identification (cusum analysis)

cusum(X )t = mean(X<t)−mean(X>t)

Observation

CUSUM
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12

Observation

CUSUM Analysis for Mean Shift Model

Wang and Samworth, JRSS-B, 2018: PCA + cusum for time series

changepoint detection
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Data from the SCOTUSBlog Stat Pack

The most significant change in court dynamics is O'Connor / Alito (AJ2) seat
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Semi-Symmetric PCA as a Flexible Pattern Recognition Tool

Semi-Symmetric PCA as a Flexible Pattern Recognition Tool:

• Raw X - major patterns (trends)

• Centered X - variance components (covariance patterns)

• Differenced X - change-point identification (cusum analysis)

Biggest change in court dynamics - AJ2 O’Connor → Alito:

=⇒

=⇒

Also: Scalia / Gorsuch seat (AJ3) essentially unchanged
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Semi-Symmetric PCA as a Flexible Pattern Recognition Tool

SS-PCA gives both principal network and (time) loading vector

For cusum analysis, loading vector identifies when change occurs
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Ongoing and Future Work



Statistical Analysis of Partially Aligned Networks

Given two graphs G1,G2 from (different) graphons, test difference

• Full Alignment: Yes! (Higher criticism, multiple binomial test; Ghoshdastidar et al., AoS 2020)

• No Alignment: Yes! (Sabanayagam et al., ICLR 2022)

• Partial Alignment: ??

Approach:

• Adapt Smooth-and-Sort estimator (Chan & Airoldi, ICML 2014) for partial

alignment

• Message-passing step forces estimates for paired vertices to match

• Statistical consistency

• Connections to partially paired t-test, permuted regression, etc.

• Apply machinery to other statistical problems

Related Work: “CONGA” (W., Michailidis, Roddenberry, ICASSP, 2021)

• Simultaneous community detection on two graphs via regularized

PLS (sparsity + graph Laplacian smoothing) of graph signals
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Unsupervised Learning

Methods for Regularized Matrix Decomposition and Clustering

Related Work:

• Sparse + Smooth PCA (Allen and W., DSW, 2019)

• Simultaneous regularized PCs via nonsmooth manifold optimization

(W., CAMSAP, 2019)

• Convex clustering of networks (W. et al., 2022+)

• MoMA Software
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Time Series Analysis

Structured multivariate time series - finance, neuroscience, envirometrics

Related Work:

• Econometric modeling of NG futures markets (W. et al., 2022+)

• Clustering of unaligned time series (W. & Michailidis, ICASSP 2021)

• Clustering + denoising time series (W. et al., DSLW, 2021)

• Complex-Valued Graphical Models of Time Series Spectra (W., 2022+)
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Machine Learning Fairness

Exploring Optimal Fairness-Accuracy Tradeoff (Pareto Frontier)

Related Work:

• Measuring, Optimizing, and Testing Fairness-Accuracy Tradeoff (W. et

al., 2022+)

• Fair PCA (W. and Allen, 2022+)

• Auditing individual fairness via metric learning (W. and Michailidis, 2022+)
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Statistical Computing

Development of efficient, robust, and “statistically sound” software

Related Work:

• Efficient algorithms for computing regularization paths (W. et al., JCGS, 2020)

• Algorithms for higher-order convex clustering (W., DSW, 2019)

• Manifold optimization in unsupervised learning (W., CAMSAP, 2019)

• clustRviz, MoMA, ExclusiveLasso, etc. R packages
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Conclusions



Statistical Analysis of Multiple Networks

Network Tensor PCA – Network Science meets PCA:

• Pattern recognition across aligned multiple networks

• Trends, Variability, Changepoint Detection

• Efficient power method-inspired algorithm

• Admits extensions for large, sparse, or streaming data

• Theoretical analysis

• Provable estimation consistency for non-convex problem

• Comparable rates to classical PCA and better than näıve approach

Tensor PCA: ArXiv 2202.04719 + Questions?
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Noise Model

Key notion of noise: operator noise of E considered as mapping from

BT × Vp×r → R≥0

‖E‖r -op = max
u,V

∣∣〈(Tr(VTE··iV)
)
i
, u
〉∣∣

Deterministic upper bound:

‖E‖r -op ≤ r
√
T max

i
λmax(E··i )

SS-Tensor Concentration bound:

‖E‖r -op ≤ cr
√
Tσ(
√
p +

√
logT + δ)

with probability at least 1− 4e−δ
2

c is small ⇔ c = 1 for true Gaussians
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Simulations
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Stock Market Application
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CUSUM Analysis: European Debt Crisis
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