Multivariate Analysis of Large-Scale Network Series

Michael Weylandt

2022-05-09 Department of Mathematics University of Houston Houston, TX USA

michael.weylandt@ufl.edu https://michaelweylandt.github.io/ IC Postdoctoral Research Fellow University of Florida Informatics Institute Ubiquitous Network Data: telecommunications, social media, neuroscience, sensor networks, transportation, *etc.*

Network Data

Ubiquitous Network Data: telecommunications, social media, neuroscience, sensor networks, transportation, *etc.*

Three types of network data:

 Networks as models of complex phenomena ("graphical models")

Ubiquitous Network Data: telecommunications, social media, neuroscience, sensor networks, transportation, *etc.*

Three types of network data:

- Networks as models of complex phenomena ("graphical models")
- Observed network(s) ("network science")

Ubiquitous Network Data: telecommunications, social media, neuroscience, sensor networks, transportation, *etc.*

Three types of network data:

- Networks as models of complex phenomena ("graphical models")
- Observed network(s) ("network science")
- Data observed on a network ("graph signal processing")

Network Data

Ubiquitous Network Data: telecommunications, social media, neuroscience, sensor networks, transportation, *etc.*

Three types of network data:

- Networks as models of complex phenomena ("graphical models")
- Observed network(s) ("network science")
- Data observed on a network ("graph signal processing")

Today: contributions to network science on multiple networks

Applications:

• Neuroscience (Zhang et al., NeuroImage, 2019)

- Neuroscience (Zhang et al., NeuroImage, 2019)
- Social Dynamics (Eagle et al., PNAS, 2009)

- Neuroscience (Zhang et al., NeuroImage, 2019)
- Social Dynamics (Eagle et al., PNAS, 2009)
- International Development (Hafner-Burton et al., International Organization, 2009)

- Neuroscience (Zhang et al., NeuroImage, 2019)
- Social Dynamics (Eagle et al., PNAS, 2009)
- International Development (Hafner-Burton et al., International Organization, 2009)
- Transportation (Cardillo et al., Sci. Reports, 2013)

Applications:

- Neuroscience (Zhang et al., NeuroImage, 2019)
- Social Dynamics (Eagle et al., PNAS, 2009)
- International Development (Hafner-Burton et al., International Organization, 2009)
- Transportation (Cardillo et al., Sci. Reports, 2013)

Network Series: an ordered set of network observed on the same nodes Special Case of "Multilayer Networks" (Kivelä et al., J. Complex Networks, 2014)

Clustering:

• Sundar *et al.*, *NeurIPS*, 2017; Mantziou *et al.* (2022+); Signorelli and Wit, *Stat. Mod.*, 2020

Clustering:

• Sundar *et al.*, *NeurIPS*, 2017; Mantziou *et al.* (2022+); Signorelli and Wit, *Stat. Mod.*, 2020

Generative Modeling:

• Crane, *Bernoulli*, 2015; Crane, *AoAP*, 2016; Gollini *JCGS*, 2016; Durante *et al.*, *JASA*, 2017

Clustering:

• Sundar et al., NeurIPS, 2017; Mantziou et al. (2022+); Signorelli and Wit, Stat. Mod., 2020

Generative Modeling:

• Crane, *Bernoulli*, 2015; Crane, *AoAP*, 2016; Gollini *JCGS*, 2016; Durante *et al.*, *JASA*, 2017

Two-Sample Testing:

• Ginestet et al., AoAS, 2017

Clustering:

• Sundar *et al.*, *NeurIPS*, 2017; Mantziou *et al.* (2022+); Signorelli and Wit, *Stat. Mod.*, 2020

Generative Modeling:

• Crane, *Bernoulli*, 2015; Crane, *AoAP*, 2016; Gollini *JCGS*, 2016; Durante *et al.*, *JASA*, 2017

Two-Sample Testing:

• Ginestet et al., AoAS, 2017

Scalar-on-Network Regression:

• Relión et al., AoAS, 2019; Guha and Rodriguez, JASA, 2021

Clustering:

• Sundar et al., NeurIPS, 2017; Mantziou et al. (2022+); Signorelli and Wit, Stat. Mod., 2020

Generative Modeling:

• Crane, *Bernoulli*, 2015; Crane, *AoAP*, 2016; Gollini *JCGS*, 2016; Durante *et al.*, *JASA*, 2017

Two-Sample Testing:

• Ginestet et al., AoAS, 2017

Scalar-on-Network Regression:

• Relión et al., AoAS, 2019; Guha and Rodriguez, JASA, 2021

Time Series Models: Hanneke et al., EJS, 2010; Chen and Chen, 2019+

Clustering:

• Sundar et al., NeurIPS, 2017; Mantziou et al. (2022+); Signorelli and Wit, Stat. Mod., 2020

Generative Modeling:

• Crane, *Bernoulli*, 2015; Crane, *AoAP*, 2016; Gollini *JCGS*, 2016; Durante *et al.*, *JASA*, 2017

Two-Sample Testing:

• Ginestet et al., AoAS, 2017

Scalar-on-Network Regression:

• Relión et al., AoAS, 2019; Guha and Rodriguez, JASA, 2021

Time Series Models: Hanneke *et al.*, *EJS*, 2010; Chen and Chen, 2019+ Joint Embeddings:

• Wang et al., PAMI, 2021

Multivariate Methods for Multiple Networks

Acknowledgements

Joint work with George Michailidis (U Florida)

UF FLORIDA

Acknowledgements

Joint work with George Michailidis (U Florida)

UF FLORIDA

IC Advisors: Joe McCloskey (NCSC) + Steve H (GCHQ)

Principal Components Analysis

Principal Components Analysis:

- Exploratory Data Analysis
- Pattern Recognition

- Dimension Reduction
- Data Visualization

Data matrix: $X \in \mathbb{R}^{n \times p}$

- *n* observations (rows)
- *p* features (columns)

Data matrix: $X \in \mathbb{R}^{n \times p}$

- *n* observations (rows)
- *p* features (columns)

 $X \approx du v^T$

Decompose X into a major pattern v and how much the pattern contributes to each observation \boldsymbol{u}

Data matrix: $X \in \mathbb{R}^{n \times p}$

- *n* observations (rows)
- *p* features (columns)

 $X \approx du v^T$

Decompose X into a major pattern \boldsymbol{v} and how much the pattern contributes to each observation \boldsymbol{u}

All-purpose pattern recognition tool:

- Raw X major patterns (trends)
- Centered X variance components (covariance patterns)
- Differenced X change-point identification (CUSUM analysis)

Goal: Apply PCA to multiple networks

Goal: Apply PCA to multiple networks

Numerical representation: given T networks on p vertices each:

Tensor Analysis

Goal: Apply PCA to multiple networks

Numerical representation: given T networks on p vertices each:

• Identify edges for each network

Tensor Analysis

Goal: Apply PCA to multiple networks

Numerical representation: given T networks on p vertices each:

- Identify edges for each network
- Create a $p \times p$ adjacency matrix

Tensor Analysis

Goal: Apply PCA to multiple networks

Numerical representation: given T networks on p vertices each:

- Identify edges for each network
- Create a *p* × *p* adjacency matrix
- Align into a $p \times p \times T$ tensor

Given $p \times p \times T$ tensor, how to break it into "principal components"?

Given $p \times p \times T$ tensor, how to break it into "principal components"?

• Tucker Factors: Optimal for compression; limited interpretation

Given $p \times p \times T$ tensor, how to break it into "principal components"?

• Tucker Factors: Optimal for compression; limited interpretation

• CP Factors: Method of choice for PCA; (orthogonal) distinct factors

Regularized variants available (Allen, AISTATS, 2012)

Given $p \times p \times T$ tensor, how to break it into "principal components"?

• Tucker Factors: Optimal for compression; limited interpretation

• CP Factors: Method of choice for PCA; (orthogonal) distinct factors

Regularized variants available (Allen, AISTATS, 2012)

Both well-studied: neither uses the network structure of our tensor

Semi-Symmetric Tensor Decomposition Needed

Semi-Symmetric Tensor Decomposition

Given a series of networks, arranged as a $p \times p \times T$ tensor, decompose into a "principal network" and loading vector

Semi-Symmetric Tensor Decomposition

Given a series of networks, arranged as a $p \times p \times T$ tensor, decompose into a "principal network" and loading vector

Goals:

- Preserve Network Structure
- Computational AND Statistical Efficiency
- Flexibility Capture Arbitrary Low-Rank Factors
- Nestability Capture Multiple Principal Components

Semi-Symmetric Tensor PCA

Semi-Symmetric Generalization of the CP decomposition:

$$\mathcal{X} \approx \sum_{i=1}^{k} d_i \, \mathsf{V}_i \circ \mathsf{V}_i \circ \mathsf{u}_i$$

where $V_i \in \mathbb{R}^{p \times r_i}$ is orthogonal, $u_i \in \mathbb{R}^T$.

$$(r_1,\ldots,r_k)$$
-SS-TPCA

Semi-Symmetric Tensor PCA

Semi-Symmetric Generalization of the CP decomposition:

$$\mathcal{X} \approx \sum_{i=1}^{k} d_i \, \mathsf{V}_i \circ \mathsf{V}_i \circ \mathsf{u}_i$$

where $V_i \in \mathbb{R}^{p \times r_i}$ is orthogonal, $u_i \in \mathbb{R}^T$.

$$(r_1,\ldots,r_k)$$
-SS-TPCA

Between classical CP and Tucker:

- Allows for components of rank ≥ 1 $_{\rm (RDPG: Athreya {\it et al., JMLR 2018)}}$
- Still has a diagonal core (viewed as Tucker)
- Restriction of a very flexible CP: repeated u factors

Semi-Symmetric Tensor PCA

Semi-Symmetric Generalization of the CP decomposition:

$$\mathcal{X} \approx \sum_{i=1}^{k} d_i \, \mathsf{V}_i \circ \mathsf{V}_i \circ \mathsf{u}_i$$

where $V_i \in \mathbb{R}^{p \times r_i}$ is orthogonal, $u_i \in \mathbb{R}^T$.

$$(r_1,\ldots,r_k)$$
-SS-TPCA

Between classical CP and Tucker:

- Allows for components of rank ≥ 1 $_{\rm (RDPG: Athreya {\it et al., JMLR 2018)}}$
- Still has a diagonal core (viewed as Tucker)
- Restriction of a very flexible CP: repeated u factors

Rank-1 model applied in multi-subject neuroimaging to find PC factors correlated with behavioral traits (Zhang *et al.*, *NeuroImage* 2019)

Tensor factors are, in general, NP-Hard to compute (Hillar and Lim, J. ACM, 2013)

Tensor factors are, in general, NP-Hard to compute (Hillar and Lim, J. ACM, 2013) We define our estimator *computationally* rather than by optimality Tensor factors are, in general, NP-Hard to compute (Hillar and Lim, J. ACM, 2013) We define our estimator *computationally* rather than by optimality Best approximation in Frobenius (ℓ_2) norm:

$$\underset{\mathsf{V},\mathsf{u},d}{\arg\min} \left\| \mathcal{X} - d\,\mathsf{V} \circ \mathsf{V} \circ \mathsf{u} \right\|_{\mathsf{F}}^2 \Longleftrightarrow \underset{\mathsf{V},\mathsf{u}}{\arg\max} \langle \mathcal{X},\mathsf{V} \circ \mathsf{V} \circ \mathsf{u} \rangle$$

Tensor factors are, in general, NP-Hard to compute (Hillar and Lim, J. ACM, 2013) We define our estimator *computationally* rather than by optimality Best approximation in Frobenius (ℓ_2) norm:

$$\underset{\mathsf{V},\mathsf{u},d}{\arg\min} \left\| \mathcal{X} - d\,\mathsf{V} \circ \mathsf{V} \circ \mathsf{u} \right\|_{\mathsf{F}}^2 \Longleftrightarrow \underset{\mathsf{V},\mathsf{u}}{\arg\max} \langle \mathcal{X},\mathsf{V} \circ \mathsf{V} \circ \mathsf{u} \rangle$$

Alternating maximization approach: u and V subproblems are tractable!

Semi-Symmetric Tensor Decomposition (Rank-k Case)

- Initialize u₀ to be random *p*-vector
- Repeat until convergence:
 - $V_k = \text{leading } r \text{-eigenvectors}(\mathcal{X} \times \mathbf{x}_3 \mathbf{u}_{k-1})$
 - $u_k \propto \mathcal{X} \times_1 V_k \times_2 V_k$
- $\bullet\,$ Return: Principal Matrix $V_\infty \circ V_\infty$ and Loading Vector u_∞

Semi-Symmetric Tensor Decomposition (Rank-k Case)

- Initialize u₀ to be random *p*-vector
- Repeat until convergence:
 - $V_k = \text{leading } r \text{-eigenvectors}(\mathcal{X} \times \mathbf{x}_3 \mathbf{u}_{k-1})$
 - $u_k \propto \mathcal{X} \times_1 V_k \times_2 V_k$
- $\bullet\,$ Return: Principal Matrix $V_\infty \circ V_\infty$ and Loading Vector u_∞

Extension of power method for eigenvalue calculations

Semi-Symmetric Tensor Decomposition (Rank-k Case)

- Initialize u₀ to be random *p*-vector
- Repeat until convergence:
 - $V_k = \text{leading } r \text{-eigenvectors}(\mathcal{X} \times \mathbf{x}_3 \mathbf{u}_{k-1})$
 - $u_k \propto \mathcal{X} \times_1 V_k \times_2 V_k$
- Return: Principal Matrix $V_\infty \circ V_\infty$ and Loading Vector u_∞

Extension of power method for eigenvalue calculations

Advantages:

- Fast
- Adaptable to streaming, big-data, sparse networks etc. in usual ways
- V_k-Update takes advantage of semi-symmetric structure

Semi-Symmetric Tensor Decomposition (Rank-k Case)

- Initialize u₀ to be random *p*-vector
- Repeat until convergence:
 - $V_k = \text{leading } r \text{-eigenvectors}(\mathcal{X} \times \mathbf{x}_3 \mathbf{u}_{k-1})$
 - $u_k \propto \mathcal{X} \times_1 V_k \times_2 V_k$
- $\bullet\,$ Return: Principal Matrix $V_\infty \circ V_\infty$ and Loading Vector u_∞

Extension of power method for eigenvalue calculations

Advantages:

- Fast
- Adaptable to streaming, big-data, sparse networks etc. in usual ways
- V_k-Update takes advantage of semi-symmetric structure

Disadvantages:

- Non-Convex
- Mildly Sensitive to Initialization

"Spiked Covariance / Low-Rank Mean" Model:

 $\mathcal{X} = d \, \mathsf{V}_* \circ \mathsf{V}_* \circ \mathsf{u}_* + \mathcal{E}$

Does the Semi-Symmetric Tensor Power Method recover u_{*} and V_{*}? *Statistical* properties: do our estimates reflect the population model? (Not interested in optimally (over-)fitting the observed data)

"Spiked Covariance / Low-Rank Mean" Model:

 $\mathcal{X} = d \, \mathsf{V}_* \circ \mathsf{V}_* \circ \mathsf{u}_* + \mathcal{E}$

Does the Semi-Symmetric Tensor Power Method recover u_{*} and V_{*}? *Statistical* properties: do our estimates reflect the population model? (Not interested in optimally (over-)fitting the observed data) Challenges:

"Spiked Covariance / Low-Rank Mean" Model:

 $\mathcal{X} = d \, \mathsf{V}_* \circ \mathsf{V}_* \circ \mathsf{u}_* + \mathcal{E}$

Does the Semi-Symmetric Tensor Power Method recover u_* and V_* ? Statistical properties: do our estimates reflect the population model? (Not interested in optimally (over-)fitting the observed data)

Challenges:

- Non-convex problem
 - Initialization-dependent solution
 - Algorithm not guaranteed to reach global optimum

"Spiked Covariance / Low-Rank Mean" Model:

 $\mathcal{X} = d \, \mathsf{V}_* \circ \mathsf{V}_* \circ \mathsf{u}_* + \mathcal{E}$

Does the Semi-Symmetric Tensor Power Method recover u_* and V_* ?

Statistical properties: do our estimates reflect the population model? (Not interested in optimally (over-)fitting the observed data)

Challenges:

- Non-convex problem
 - Initialization-dependent solution
 - Algorithm not guaranteed to reach global optimum
- Limited theoretical tools:
 - Adversarial analysis of noisy power method (Hardt and Price, NeurIPS, 2014)
 - Davis-Kahan theorem (Yu et al., Biometrika, 2015)
 - Control of \hat{u},\hat{v} from PCA on $\hat{X}=X_*+E$ in terms of $\|E\|_{op}$

"Spiked Covariance / Low-Rank Mean" Model:

 $\mathcal{X} = d \, \mathsf{V}_* \circ \mathsf{V}_* \circ \mathsf{u}_* + \mathcal{E}$

Does the Semi-Symmetric Tensor Power Method recover u_* and V_* ?

Statistical properties: do our estimates reflect the population model? (Not interested in optimally (over-)fitting the observed data)

Challenges:

- Non-convex problem
 - Initialization-dependent solution
 - Algorithm not guaranteed to reach global optimum
- Limited theoretical tools:
 - Adversarial analysis of noisy power method (Hardt and Price, NeurIPS, 2014)
 - Davis-Kahan theorem (Yu et al., Biometrika, 2015)
 - Control of \hat{u},\hat{v} from PCA on $\hat{X}=X_*+E$ in terms of $\|E\|_{op}$
- Recovery up to orthogonal rotation

- Sun *et al.*, *JRSS-B*, 2017:
 - Statistical consistency of 3-way tensor decompositions without symmetry

- Sun *et al.*, *JRSS-B*, 2017:
 - Statistical consistency of 3-way tensor decompositions without symmetry
- Anandkumar et al., JMLR, 2017:
 - Statistical consistency of fully-symmetric 3-way tensor decomposition

- Sun *et al., JRSS-B*, 2017:
 - Statistical consistency of 3-way tensor decompositions without symmetry
- Anandkumar et al., JMLR, 2017:
 - Statistical consistency of fully-symmetric 3-way tensor decomposition
- Wang et al., PAMI, 2021:
 - Optimization convergence of a closely-related greedy algorithm
 - Asymptotic (Large Sample) Consistency for Erdő-Renyi graphs

Statistics:

- Sun *et al., JRSS-B*, 2017:
 - Statistical consistency of 3-way tensor decompositions without symmetry
- Anandkumar et al., JMLR, 2017:
 - Statistical consistency of fully-symmetric 3-way tensor decomposition
- Wang et al., PAMI, 2021:
 - Optimization convergence of a closely-related greedy algorithm
 - Asymptotic (Large Sample) Consistency for Erdő-Renyi graphs

Applied Math:

Statistics:

- Sun *et al., JRSS-B*, 2017:
 - Statistical consistency of 3-way tensor decompositions without symmetry
- Anandkumar et al., JMLR, 2017:
 - Statistical consistency of fully-symmetric 3-way tensor decomposition
- Wang et al., PAMI, 2021:
 - Optimization convergence of a closely-related greedy algorithm
 - Asymptotic (Large Sample) Consistency for Erdő-Renyi graphs

Applied Math:

- Sorensen and De Lathauwer, SIMAX, 2015
 - Considered our model as a (*L_r*, *L_r*, 1)-Multilinear Rank Decomposition
 - No "statistical" theory

Theorem (Semi-Formal)

Suppose $\mathcal{X} = d V_* \circ V_* \circ u_* + \mathcal{E}$ where

- u_{*} is a unit-norm *T*-vector
- V_* is a $p \times r$ orthogonal matrix satisfying $V_*^T V_* = I_{r \times r}$
- $d \in \mathbb{R}_{>0}$ is a measure of signal strength
- \mathcal{E} is a semi-symmetric noise tensor each free element of which is independently σ -sub-Gaussian.

With sufficiently good iteration, our Algorithm applied to \mathcal{X} satisfies the following with high probability:

$$\min_{\mathsf{O}\in\mathcal{V}^{k\times k}} \frac{\|\mathsf{V}^* - \hat{\mathsf{V}}\mathsf{O}\|_2}{\sqrt{pr}} \lesssim \frac{\sigma r \sqrt{T}}{d} \quad \text{and} \quad \min_{\epsilon \in \{\pm 1\}} \frac{\|\mathsf{u}^* - \hat{\mathsf{u}}\epsilon\|_2}{\sqrt{T}} \lesssim \frac{\sigma r \sqrt{p}}{d}$$

Furthermore the statistical convergence is linear (fast) before hitting the "noise barrier"

Davis-Kahan theorem applied repeatedly + iteration: V-update:

$$\|\sin \angle (\mathsf{V}^*,\mathsf{V}^{(k+1)})\|_F \leq 2\left|1 - \cos \angle (\mathsf{u}^{(k+1)},\mathsf{u}_*)\right| + \frac{2\left\|\mathcal{E}\right\|_{r\text{-op}}}{d}$$

Davis-Kahan theorem applied repeatedly + iteration: V-update:

$$|\sin \angle (\mathsf{V}^*,\mathsf{V}^{(k+1)})\|_F \leq 2 \left|1 - \cos \angle (\mathsf{u}^{(k+1)},\mathsf{u}_*)
ight| + rac{2 \left\|\mathcal{E}
ight\|_{r ext{-op}}}{d}$$

u-update:

$$|\sin \angle (\mathsf{u}_{*},\mathsf{u}^{(k+1)})| \leq 2 \left|1 - \cos \angle (\mathsf{V}_{*},\mathsf{V}^{(k)})^{4}\right| + \frac{4r \left\|\mathcal{E}\right\|_{r-\mathsf{op}}}{d} + \frac{2r^{2} \left\|\mathcal{E}\right\|_{r-\mathsf{op}}^{2}}{d^{2}}$$

Surprisingly tricky deal with normalization of u updates \implies apply DK to $\lambda \tilde{u}_k \circ \tilde{u}_k - u_* \circ u_*$ for suitable λ

Davis-Kahan theorem applied repeatedly + iteration: V-update:

$$|\sin \angle (\mathsf{V}^*,\mathsf{V}^{(k+1)})\|_F \leq 2 \left|1 - \cos \angle (\mathsf{u}^{(k+1)},\mathsf{u}_*)\right| + \frac{2 \left\|\mathcal{E}\right\|_{r\text{-op}}}{d}$$

u-update:

$$|\sin \angle (\mathbf{u}_{*}, \mathbf{u}^{(k+1)})| \leq 2 \left| 1 - \cos \angle (\mathbf{V}_{*}, \mathbf{V}^{(k)})^{4} \right| + \frac{4r \left\| \mathcal{E} \right\|_{r-\text{op}}}{d} + \frac{2r^{2} \left\| \mathcal{E} \right\|_{r-\text{op}}^{2}}{d^{2}}$$

Surprisingly tricky deal with normalization of u updates \implies apply DK to $\lambda \tilde{u}_k \circ \tilde{u}_k - u_* \circ u_*$ for suitable λ

To combine these results, note that for small angles $2|1 - \cos \theta| < |\sin \theta|$ Assume we are in this range ($\approx [0, 53^{\circ}]$) via good initialization (actually a bit smaller to deal with noise)

Davis-Kahan theorem applied repeatedly + iteration: V-update:

$$|\sin \angle (\mathsf{V}^*,\mathsf{V}^{(k+1)})\|_F \leq 2 \left|1 - \cos \angle (\mathsf{u}^{(k+1)},\mathsf{u}_*)
ight| + rac{2 \left\|\mathcal{E}
ight\|_{r ext{-op}}}{d}$$

u-update:

$$|\sin \angle (\mathbf{u}_{*}, \mathbf{u}^{(k+1)})| \leq 2 \left| 1 - \cos \angle (\mathbf{V}_{*}, \mathbf{V}^{(k)})^{4} \right| + \frac{4r \left\| \mathcal{E} \right\|_{r-op}}{d} + \frac{2r^{2} \left\| \mathcal{E} \right\|_{r-op}^{2}}{d^{2}}$$

Surprisingly tricky deal with normalization of u updates \implies apply DK to $\lambda \tilde{u}_k \circ \tilde{u}_k - u_* \circ u_*$ for suitable λ

To combine these results, note that for small angles $2|1 - \cos \theta| < |\sin \theta|$ Assume we are in this range ($\approx [0, 53^{\circ}]$) via good initialization (actually a bit smaller to deal with noise)

Chain + iterate to desired bound

More detailed work shows that:

Error at Iteration $k \approx c^k E_1 + E_2/(1-c)$

where

More detailed work shows that:

Error at Iteration
$$k \approx c^k E_1 + E_2/(1-c)$$

where

 E₁ is initialization error (depends only on ∠(u₀, u_{*}))

More detailed work shows that:

Error at Iteration $k \approx c^k E_1 + E_2/(1-c)$

where

- E₁ is initialization error (depends only on ∠(u₀, u_{*}))
- *E*₂ is stochastic error (depends on noise ||*E*||_{r-op} & signal *d*)

More detailed work shows that:

Error at Iteration $k \approx c^k E_1 + E_2/(1-c)$

where

- E₁ is initialization error (depends only on ∠(u₀, u_{*}))
- *E*₂ is stochastic error (depends on noise ||*E*||_{r-op} & signal *d*)
- c < 1 depends on initialization quality

More detailed work shows that:

Error at Iteration $k \approx c^k E_1 + E_2/(1-c)$

where

- E₁ is initialization error (depends only on ∠(u₀, u_{*}))
- E₂ is stochastic error (depends on noise ||*E*||_{r-op} & signal d)
- c < 1 depends on initialization quality

Implications:

- Geometric convergence to "noise range"
- Possibly slow (or looping) after that

Similar results obtained for sparse regression by Fan et al. (AoS, 2018)

More detailed work shows that:

Error at Iteration $k \approx c^k E_1 + E_2/(1-c)$

where

- E₁ is initialization error (depends only on ∠(u₀, u_{*}))
- E₂ is stochastic error (depends on noise ||*E*||_{r-op} & signal d)
- c < 1 depends on initialization quality

Implications:

- Geometric convergence to "noise range"
- Possibly slow (or looping) after that

Similar results obtained for sparse regression by Fan *et al.* (*AoS*, 2018) All this despite non-convexity: analyze *algorithm* not *problem*!

Is this just PCA?

Weighted networks + (real) inner product - perform a spectral decomposition in this space (Eaton, 1983)?

Is this just PCA?

Weighted networks + (real) inner product - perform a spectral decomposition in this space (Eaton, 1983)?

Does not enforce rank-r structure on "principal network:" SS-TPCA is equivalent to

$$\underset{u,v}{\operatorname{arg\,max}} \operatorname{u}^{\mathcal{T}} \mathcal{M}_{3}(\mathcal{X}) v$$
 such that $\operatorname{rank}(\operatorname{unvec}(v)) = r$

Variant of Truncated Power Method for Sparse PCA (Yuan and Zhang, *JMLR* 2013) with "unvec-rank" instead of sparsity constraint
Comparison with Classical PCA

Method	Dimension	<i>u</i> -MSE	<i>v</i> -MSE
Classical PCA	T imes p	$\frac{\sigma\sqrt{p}}{d}$	$\frac{\sigma\sqrt{T}}{d}$

 $\mathcal{O}(\sqrt{\log T/T})$ terms omitted

Method	Dimension	<i>u</i> -MSE	<i>v</i> -MSE
Classical PCA Vectorize + PCA	$T imes p \ T imes egin{pmatrix}p\ T\ imes egin{pmatrix}p\ 2\end{pmatrix} \end{pmatrix}$	$\frac{\sigma\sqrt{p}}{d}$ $\frac{\sigma p}{d}$	$\frac{\sigma\sqrt{T}}{d}$ $\frac{\sigma\sqrt{T}}{d}$

 $\mathcal{O}(\sqrt{\log T/T})$ terms omitted

Method	Dimension	<i>u</i> -MSE	<i>v</i> -MSE
Classical PCA	T imes p	$\frac{\sigma\sqrt{p}}{d}$	$\frac{\sigma\sqrt{T}}{d}$
Vectorize + PCA	$T \times \binom{p}{2}$	d d	$\frac{\sigma\sqrt{T}}{d}$
SS-TPCA	$p \times p \times T$	$\frac{\sigma r \sqrt{p}}{d}$	$\frac{\sigma r \sqrt{T}}{d}$

 $\mathcal{O}(\sqrt{\log T/T})$ terms omitted

Method	Dimension	<i>u</i> -MSE	<i>v</i> -MSE
Classical PCA	$T \times p$	$\frac{\sigma\sqrt{p}}{d}$	$\frac{\sigma\sqrt{T}}{d}$
Vectorize $+$ PCA	$I \times \begin{pmatrix} p \\ 2 \end{pmatrix}$	$\frac{d}{d}$	$\frac{d \sqrt{T}}{d}$
SS-TPCA	$p \times p \times T$	$\frac{\sigma r \sqrt{p}}{d}$	$\frac{\sigma r \sqrt{T}}{d}$

Tensor approach:

- Same rate as classical PCA (when r = 1)
- Better than naïve (vectorization) approach by factor of $\sqrt{p} \gg r$

 $\mathcal{O}(\sqrt{\log \, T \, / \, T})$ terms omitted

Method	Dimension	<i>u</i> -MSE	<i>v</i> -MSE
Classical PCA Vectorize + PCA SS-TPCA	$T \times p$ $T \times \binom{p}{2}$ $p \times p \times T$	$\frac{\sigma\sqrt{p}}{d}$ $\frac{\sigma p}{d}$ $\frac{\sigma r\sqrt{p}}{d}$	$\frac{\sigma\sqrt{T}}{d}$ $\frac{\sigma\sqrt{T}}{d}$ $\frac{\sigma r\sqrt{T}}{d}$

Tensor approach:

- Same rate as classical PCA (when r = 1)
- Better than naı̈ve (vectorization) approach by factor of $\sqrt{p} \gg r$

Connection to "unvec-rank" constrained PCA highlights key role of Davis-Kahan in theoretical analysis

 $[\]mathcal{O}(\sqrt{\log \, T \, / \, T})$ terms omitted

Initialization:

- For many network problems, signal is roughly constant (or at least positive)
 - Stable initialization: $u_0 = 1/\sqrt{T}$
 - Performs particularly well for trend-finding and change-point
- Random (re-)initialization works well for hardest problems
- See simulations in paper

Initialization:

- For many network problems, signal is roughly constant (or at least positive)
 - Stable initialization: $u_0 = 1/\sqrt{T}$
 - Performs particularly well for trend-finding and change-point
- Random (re-)initialization works well for hardest problems
- See simulations in paper

Deflation: $\mathcal{X}^t \Leftarrow \mathcal{X}^{t-1} \times_1 [I_p - \hat{V} \circ \hat{V}] \times_2 [I_p - \hat{V} \circ \hat{V}] \times_3 [I - \hat{u}\hat{u}^T]$

• Removes estimated signal: $\mathcal{X}^t \times_1 V_t \circ V_t = \mathcal{X}^t \cdot \overline{\times}_3 u_t = 0$

Initialization:

- For many network problems, signal is roughly constant (or at least positive)
 - Stable initialization: $u_0 = 1/\sqrt{T}$
 - Performs particularly well for trend-finding and change-point
- Random (re-)initialization works well for hardest problems
- See simulations in paper

 $\mathsf{Deflation:} \ \mathcal{X}^t \Leftarrow \mathcal{X}^{t-1} \times_1 [\mathsf{I}_p - \hat{\mathsf{V}} \circ \hat{\mathsf{V}}] \times_2 [\mathsf{I}_p - \hat{\mathsf{V}} \circ \hat{\mathsf{V}}] \times_3 [\mathsf{I} - \hat{\mathsf{u}} \hat{\mathsf{u}}^T]$

- Removes estimated signal: $\mathcal{X}^t \times_1 V_t \circ V_t = \mathcal{X}^t \overline{\times}_3 u_t = 0$
- $\|\mathcal{X}^t\| > \|\mathcal{X}^{t-1}\|$; may not lower rank (Stegman and Comon, Lin. Alg. Appl., 2010)

Initialization:

- For many network problems, signal is roughly constant (or at least positive)
 - Stable initialization: $u_0 = 1/\sqrt{T}$
 - Performs particularly well for trend-finding and change-point
- Random (re-)initialization works well for hardest problems
- See simulations in paper

Deflation: $\mathcal{X}^t \Leftarrow \mathcal{X}^{t-1} \times_1 [I_p - \hat{V} \circ \hat{V}] \times_2 [I_p - \hat{V} \circ \hat{V}] \times_3 [I - \hat{u}\hat{u}^T]$

- Removes estimated signal: $\mathcal{X}^t \times_1 V_t \circ V_t = \mathcal{X}^t \overline{\times}_3 u_t = 0$
- $\|\mathcal{X}^t\| > \|\mathcal{X}^{t-1}\|$; may not lower rank (Stegman and Comon, Lin. Alg. Appl., 2010)

Rank Selection:

Initialization:

- For many network problems, signal is roughly constant (or at least positive)
 - Stable initialization: $u_0 = 1/\sqrt{T}$
 - Performs particularly well for trend-finding and change-point
- Random (re-)initialization works well for hardest problems
- See simulations in paper

 $\mathsf{Deflation:} \ \mathcal{X}^t \Leftarrow \mathcal{X}^{t-1} \times_1 [\mathsf{I}_p - \hat{\mathsf{V}} \circ \hat{\mathsf{V}}] \times_2 [\mathsf{I}_p - \hat{\mathsf{V}} \circ \hat{\mathsf{V}}] \times_3 [\mathsf{I} - \hat{\mathsf{u}} \hat{\mathsf{u}}^T]$

- Removes estimated signal: $\mathcal{X}^t \times_1 V_t \circ V_t = \mathcal{X}^t \overline{\times}_3 u_t = 0$
- $\|\mathcal{X}^t\| > \|\mathcal{X}^{t-1}\|$; may not lower rank (Stegman and Comon, Lin. Alg. Appl., 2010)

Rank Selection:

• Data-Driven or BIC used to select K (Sedighin, J. Spec. Top. Sig. Proc., 2021)

Initialization:

- For many network problems, signal is roughly constant (or at least positive)
 - Stable initialization: $u_0 = 1/\sqrt{T}$
 - Performs particularly well for trend-finding and change-point
- Random (re-)initialization works well for hardest problems
- See simulations in paper

 $\mathsf{Deflation:} \ \mathcal{X}^t \Leftarrow \mathcal{X}^{t-1} \times_1 [\mathsf{I}_p - \hat{\mathsf{V}} \circ \hat{\mathsf{V}}] \times_2 [\mathsf{I}_p - \hat{\mathsf{V}} \circ \hat{\mathsf{V}}] \times_3 [\mathsf{I} - \hat{\mathsf{u}} \hat{\mathsf{u}}^T]$

- Removes estimated signal: $\mathcal{X}^t \times_1 V_t \circ V_t = \mathcal{X}^t \overline{\times}_3 u_t = 0$
- $\|\mathcal{X}^t\| > \|\mathcal{X}^{t-1}\|$; may not lower rank (Stegman and Comon, Lin. Alg. Appl., 2010)

Rank Selection:

- Data-Driven or BIC used to select K (Sedighin, J. Spec. Top. Sig. Proc., 2021)
- Selecting r too high usually harmless

Application: SCOTUS Voting

Can we use network analysis to identify voting patterns among SCOTUS Justices?

Each term SCOTUS decides \approx 80 cases:

- Create a weighted, undirected network based on co-voting¹
- Analyze by "seat" (AJ7 = Ginsburg = Barrett), not by Justice

¹We consider agreement *in the judgement*, not in reasoning.

Each term SCOTUS decides \approx 80 cases:

- Create a weighted, undirected network based on co-voting¹
- Analyze by "seat" (AJ7 = Ginsburg = Barrett), not by Justice

Data: SCOTUSblog annual "stat pack" - OT 1995 to OT 2020

 9×9 pairs \times 25 terms $\equiv \mathcal{X} \in \mathbb{R}^{9\times9\times25}$

¹We consider agreement *in the judgement*, not in reasoning.

Example - OT 2001

October Term 2001

- Raw \mathcal{X} major patterns (trends)
- Centered \mathcal{X} variance components (covariance patterns)
- Differenced X change-point identification (CUSUM analysis)

- Raw X major patterns (trends)
- Centered \mathcal{X} variance components (covariance patterns)
- Differenced X change-point identification (CUSUM analysis)

Baseline (Mean) Court Behavior The majority of SCOTUS cases are decided (nearly) unanimously

Semi-Symmetric PCA as a Flexible Pattern Recognition Tool:

- Raw X major patterns (trends)
- Centered \mathcal{X} variance components (covariance patterns)
- Differenced X change-point identification (CUSUM analysis)

VIDEO

LIVE SHOWS

CORONAVIRUS

Q

Supreme Court defies critics with wave of unanimous decisions

Chief Justice John Roberts is credited with fostering consensus on high court.

By **Devin Dwyer** June 29, 2021, 4:12 AM • 11 min read

f 🏏 i

The Washington Post Democracy Dies in Darkness

Get one year for \$40

PostEverything • Perspective

Sections =

Those 5-to-4 decisions on the Supreme Court? 9 to 0 is far more common.

- Raw \mathcal{X} major patterns (trends)
- Centered X variance components (covariance patterns)
- Differenced X change-point identification (CUSUM analysis)

First Principal Component of Court Behavior The most significant source of divided rulings is the familiar left/right split

Semi-Symmetric PCA as a Flexible Pattern Recognition Tool:

- Raw \mathcal{X} major patterns (trends)
- Centered X variance components (covariance patterns)
- Differenced X change-point identification (CUSUM analysis)

9/11 A World Changed AP Top 25 College Football Poll Coronavirus pandemic Politics Sports Entertainment Photography

Justice Ginsburg warns of more 5-4 decisions ahead The New Hork Times

Splitting 5 to 4, Supreme Court Backs Religious Challenge to Cuomo's Virus

31

Semi-Symmetric PCA as a Flexible Pattern Recognition Tool:

- Raw X major patterns (trends)
- Centered X variance components (covariance patterns)
- Differenced X change-point identification (CUSUM analysis)

Semi-Symmetric PCA as a Flexible Pattern Recognition Tool:

- Raw X major patterns (trends)
- Centered X variance components (covariance patterns)
- Differenced X change-point identification (CUSUM analysis)

$$\operatorname{cusum}(X)_t = \operatorname{mean}(X_{< t}) - \operatorname{mean}(X_{> t})$$

Wang and Samworth, JRSS-B, 2018: PCA + CUSUM for time series

First Principal Component of Tensor CUSUM Analysis The most significant change in court dynamics is O'Connor / Alito (AJ2) seat

Semi-Symmetric PCA as a Flexible Pattern Recognition Tool:

- Raw X major patterns (trends)
- Centered X variance components (covariance patterns)
- Differenced X change-point identification (CUSUM analysis)

Semi-Symmetric PCA as a Flexible Pattern Recognition Tool:

- Raw X major patterns (trends)
- Centered X variance components (covariance patterns)
- Differenced X change-point identification (CUSUM analysis)

Biggest change in court dynamics - AJ2 O'Connor \rightarrow Alito:

Semi-Symmetric PCA as a Flexible Pattern Recognition Tool:

- Raw X major patterns (trends)
- Centered X variance components (covariance patterns)
- Differenced X change-point identification (CUSUM analysis)

Biggest change in court dynamics - AJ2 O'Connor \rightarrow Alito:

Also: Scalia / Gorsuch seat (AJ3) essentially unchanged

SS-PCA gives both principal network and (time) loading vector

SS-PCA gives both **principal network** and **(time) loading vector** For CUSUM analysis, loading vector identifies **when** change occurs

Ongoing and Future Work

Statistical Analysis of Partially Aligned Networks

Given two graphs $\mathcal{G}_1, \mathcal{G}_2$ from (different) graphons, test difference

- Full Alignment: Yes! (Higher criticism, multiple binomial test; Ghoshdastidar et al., AoS 2020)
- No Alignment: Yes! (Sabanayagam et al., ICLR 2022)
- Partial Alignment: ??
Statistical Analysis of Partially Aligned Networks

Given two graphs $\mathcal{G}_1, \mathcal{G}_2$ from (different) graphons, test difference

- Full Alignment: Yes! (Higher criticism, multiple binomial test; Ghoshdastidar et al., AoS 2020)
- No Alignment: Yes! (Sabanayagam et al., ICLR 2022)
- Partial Alignment: ??

Approach:

- Adapt Smooth-and-Sort estimator (Chan & Airoldi, ICML 2014) for partial alignment
 - Message-passing step forces estimates for paired vertices to match
 - Statistical consistency
- Connections to partially paired *t*-test, permuted regression, etc.
- Apply machinery to other statistical problems

Statistical Analysis of Partially Aligned Networks

Given two graphs $\mathcal{G}_1, \mathcal{G}_2$ from (different) graphons, test difference

- Full Alignment: Yes! (Higher criticism, multiple binomial test; Ghoshdastidar et al., AoS 2020)
- No Alignment: Yes! (Sabanayagam et al., ICLR 2022)
- Partial Alignment: ??

Approach:

- Adapt Smooth-and-Sort estimator (Chan & Airoldi, ICML 2014) for partial alignment
 - Message-passing step forces estimates for paired vertices to match
 - Statistical consistency
- Connections to partially paired *t*-test, permuted regression, etc.
- Apply machinery to other statistical problems

Related Work: "CONGA" (W., Michailidis, Roddenberry, ICASSP, 2021)

• Simultaneous community detection on two graphs via regularized PLS (sparsity + graph Laplacian smoothing) of graph signals

Methods for Regularized Matrix Decomposition and Clustering

Unsupervised Learning

Methods for Regularized Matrix Decomposition and Clustering

Unsupervised Learning

Methods for Regularized Matrix Decomposition and Clustering

Unsupervised Learning

Methods for Regularized Matrix Decomposition and Clustering

Related Work:

- Sparse + Smooth PCA (Allen and W., DSW, 2019)
- Simultaneous regularized PCs via nonsmooth manifold optimization

(W., CAMSAP, 2019)

- Convex clustering of networks (W. et al., 2022+)
- MoMA Software

Structured multivariate time series - finance, neuroscience, envirometrics

Time Series Analysis

Structured multivariate time series - finance, neuroscience, envirometrics

Time Series Analysis

Structured multivariate time series - finance, neuroscience, envirometrics

Time Series Analysis

Structured multivariate time series - finance, neuroscience, envirometrics

Related Work:

- Econometric modeling of NG futures markets (W. et al., 2022+)
- Clustering of unaligned time series (W. & Michailidis, ICASSP 2021)
- Clustering + denoising time series (W. et al., DSLW, 2021)
- Complex-Valued Graphical Models of Time Series Spectra (W., 2022+)

Machine Learning Fairness

Exploring Optimal Fairness-Accuracy Tradeoff (Pareto Frontier)

Machine Learning Fairness

Exploring Optimal Fairness-Accuracy Tradeoff (Pareto Frontier)

Related Work:

- Measuring, Optimizing, and Testing Fairness-Accuracy Tradeoff (W. et al., 2022+)
- Fair PCA (W. and Allen, 2022+)
- Auditing individual fairness via metric learning (W. and Michailidis, 2022+)

Development of efficient, robust, and "statistically sound" software

Statistical Computing

Development of efficient, robust, and "statistically sound" software

Statistical Computing

Development of efficient, robust, and "statistically sound" software

Statistical Computing

Development of efficient, robust, and "statistically sound" software

Related Work:

- Efficient algorithms for computing regularization paths (W. et al., JCGS, 2020)
- Algorithms for higher-order convex clustering (W., DSW, 2019)
- Manifold optimization in unsupervised learning (W., CAMSAP, 2019)
- clustRviz, MoMA, ExclusiveLasso, etc. R packages

Conclusions

Network Tensor PCA - Network Science meets PCA:

• Pattern recognition across aligned multiple networks

- Pattern recognition across aligned multiple networks
- Trends, Variability, Changepoint Detection

- Pattern recognition across aligned multiple networks
- Trends, Variability, Changepoint Detection
- Efficient power method-inspired algorithm
 - Admits extensions for large, sparse, or streaming data

- Pattern recognition across aligned multiple networks
- Trends, Variability, Changepoint Detection
- Efficient power method-inspired algorithm
 - Admits extensions for large, sparse, or streaming data
- Theoretical analysis
 - Provable estimation consistency for non-convex problem
 - Comparable rates to classical PCA and better than naïve approach

Network Tensor PCA - Network Science meets PCA:

- Pattern recognition across aligned multiple networks
- Trends, Variability, Changepoint Detection
- Efficient power method-inspired algorithm
 - Admits extensions for large, sparse, or streaming data
- Theoretical analysis
 - Provable estimation consistency for non-convex problem
 - Comparable rates to classical PCA and better than naïve approach

Tensor PCA: ArXiv 2202.04719 + Questions?

Backup Slides

Noise Model

Key notion of noise: operator noise of $\mathcal E$ considered as mapping from $\overline{\mathbb B}^{\mathcal T}\times \mathcal V^{p\times r}\to \mathbb R_{>0}$

$$\left\| \mathcal{E} \right\|_{r\text{-op}} = \max_{\mathbf{u},\mathbf{V}} \left| \left\langle \left(\mathsf{Tr}(\mathbf{V}^{\mathsf{T}} \mathcal{E}_{\cdot \cdot i} \mathbf{V}) \right)_{i}, \mathbf{u} \right\rangle \right|$$

Deterministic upper bound:

$$\|\mathcal{E}\|_{r-\mathrm{op}} \leq r\sqrt{T} \max_{i} \lambda_{\max}(\mathcal{E}_{\cdot\cdot i})$$

SS-Tensor Concentration bound:

$$\|\mathcal{E}\|_{r-\mathsf{op}} \leq cr\sqrt{T}\sigma(\sqrt{p} + \sqrt{\log T} + \delta)$$

with probability at least $1-4e^{-\delta^2}$

c is small $\Leftrightarrow c = 1$ for true Gaussians

Simulations

Simulations

Stock Market Application

