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Big-Data

“Big Data” enables “Big Models”

“Big Data” is never IID

“Big Data” requires “Big Models”

Highly-structured data requires flexible but powerful models to reflect
and capture dependencies in data

Big data allows us to fit such models
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Convex Revolution in Statistical Machine Learning

Biggest advance in 21st c. statistics – convex analysis and optimization:

• Development of novel regularized estimation schemes
• Algorithms that efficiently scale to enormous data sets
• Theoretical advances based on powerful convex analysis

Develop Methodology for Big Highly-Structured Data
Built on Powerful Convex Analysis and Optimization
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Agenda

Splitting Methods for Clustering

Multi-Rank Regularized PCA

Multivariate Models for Gas Markets

Complex Convex Analysis

Conclusion & Discussion
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Splitting Methods for Clustering



Tensor Co-Clustering

Co-Clustering:
• Simultaneous clustering along

all faces of a tensor
• Discover “checkerboard”

patterns in data
• “Cluster Heatmap” for

2-tensors
• Manifold learning for

K-tensors (Mishne et al., 2019)
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Convex Bi-Clustering

Convex formulation of co-clustering: Chi et al. (2017) and Chi et al. (2018)

• Frobenius norm loss =⇒ approximate observed data
• Convex fusion penalty =⇒ encourages clustering

Matrix (2-tensor) case:

Û = argmin
U∈Rn×p

1
2∥X − U∥2

F+λ

 n∑
i,j=1
i ̸=j

wij∥Ui· − Uj·∥q +

p∑
k,l=1
k ̸=l

w̃kl∥U·k − U·l∥q


Simultaneous clustering of rows and columns:

• Rows are clustered together if Ûi· = Ûj·
• Columns are clustered together if Û·k = Û·l
• Each element of X is assigned to a single bi-cluster

λ controls the number of co-clusters smoothly
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Splitting Methods for Convex Bi-Clustering

Simplified form:

Û = argmin
U∈Rn×p

1
2∥X − U∥2

F + λ

∥DrowU∥row,q︸ ︷︷ ︸
Prow(DrowU)

+ ∥UDcol∥col,q︸ ︷︷ ︸
Pcol(UDcol)



Current state of the art:

COBRA - Dykstra-Like Proximal Algorithm
(Bauschke and Combettes, 2008; Chi and Lange, 2015)

• Alternating row- and column-wise convex clustering

Convex clustering subproblems are still slow, so COBRA doesn’t scale
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Splitting Methods for Convex Bi-Clustering

Û = argmin
U∈Rn×p

1
2∥X − U∥2

F + λ

∥DrowU∥row,q︸ ︷︷ ︸
Prow(DrowU)

+ ∥UDcol∥col,q︸ ︷︷ ︸
Pcol(UDcol)


Can we develop a fast splitting approach?

Davis and Yin (2017) three-block ADMM:

1. U(k+1) = X − DT
rowZ(k)

row − Z(k)
colDT

col
2(a). V(k+1)

row = proxλ/ρ Prow(·)(DrowU(k+1) + Z(k)
row)

2(b). V(k+1)
col = proxλ/ρ Pcol(·)(U(k+1)Dcol + Z(k)

col)

3(a). Z(k+1)
row = Z(k)

row + ρ(DrowU(k+1) − V(k+1)
row )

3(b). Z(k+1)
col = Z(k)

col + ρ(U(k+1)Dcol − V(k+1)
col )

Equivalent to AMA and to prox-gradient on the dual - very slow!
(Tseng, 1991)
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Splitting Methods for Convex Bi-Clustering

Why not apply ADMM directly?

Lifted problem:

argmin
U∈Rn×p

(Vrow,Vcol)∈R#row×p×Rn×#col

1
2∥X − U∥2

F + λ (Prow(Vrow) + Pcol(Vcol))

subject to

L1U − (Vrow,Vcol) = 0 where L1U = (DrowU,UDcol)

Isomorphic, but much better computationally!

V,Z updates as before (separable penalties + Cartesian structure)
U more complicated
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Splitting Methods for Convex Bi-Clustering

U-subproblem:

argmin
U∈Rn×p

1
2∥X−U∥2

F+
ρ

2∥DrowU−V(k)
row+ρ−1Z(k)

row∥2
F+

ρ

2∥UDcol−V(k)
col+ρ−1Z(k)

col∥
2
F

Stationary condition - Sylvester equation:

X+DT
row(V(k)

row−ρ−1Z(k)
row)+(V(k)

col−ρ−1Z(k)
col)DT

col = U+ρDT
rowDrowU+ρUDcolDT

col

Alternative: add quadratic term to make U-subproblem easier to solve
(Deng and Yin, 2016)

argmin
U∈Rn×p

· · ·+ α∥U∥2
F − ρ∥L1U∥2 where L1U = (DrowU,UDcol)

U(k+1) =
(
αU(k) + X + ρDT

row(V(k) − ρ−1Z(k)
row − DrowU(k))

+ρ(V(k)
col − ρ−1Z(k)

col − U(k)Dcol)DT
col

)
/(1 + α)
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Results

Compare:

• ADMM
• Generalized ADMM
• Davis-Yin Three-Block ADMM
• COBRA =⇒ alternating row- and column-clustering sub-problems

Data:

• Presidents ∈ R44×75

• TCGA Breast Cancer ∈ R438×353
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Results: Iteration Count
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Results: Elapsed Time
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Higher-Order Extensions

Û = argmin
U

1
2∥X − U∥2

F + λ

J∑
j=1

∥U ×j Dj∥j,q

Same “lifting” approach works for Generalized ADMM and Davis-Yin:

U (k+1)
Gen-ADMM =

α

1 + α
U (k) +

X
1 + α

+
ρ

1 + α

J∑
j=1

(V(k)
j − ρ−1Z(k)

j − U (k) ×j Dj)×j DT
j

U (k+1)
DY / AMA = X −

J∑
j=1

Z(k)
j ×j (Dj)

T

V(k+1)
j = prox

λ/ρ∥·∥j,q

(
U (k+1) ×j Dj + ρ−1Z(k)

j

)
∀j ∈ {1, . . . , J}

Z(k+1)
j = Z(k)

j + ρ(U (k+1) ×j Dj − V(k+1)
j ) ∀j ∈ {1, . . . , J}

Standard ADMM =⇒ tensor Sylvester equation:

X + ρ

J∑
j=1

(V(k)
j − ρ−1Z(k)

j )×j DT
j = UADMM + ρ

J∑
j=1

UADMM ×j Dj ×j DT
j .
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Implications

Efficient Convex Clustering Algorithm

Embed in More Complex Schemes (e.g., 2D trend filtering)

“Lifting” Trick Useful for Multiply-Regularized Problems
14



Multi-Rank Regularized PCA



Motivation

Principal Components Analysis:

• Exploratory Data Analysis
• Pattern Recognition

• Dimension Reduction
• Data Visualization

15



Regularization in PCA

Low-rank model for PCA - estimate low-rank mean of X:

X = uvT + E where E iid∼ N (0, σ2)

argmin
u,v,d

∥X − duvT∥2
F ⇔ argmax

u,v
uTXv subject to ∥u∥ = ∥v∥ = 1

Advantages:

• Identify patterns in rows and columns of X
• u, v, d calculated using SVD of X

PCA is consistent under standard (n → ∞) asymptotics (Anderson, 1963)

Convergence is slow: RMT asymptotics (p/n → c) more relevant

PCA in high-dimensions is inconsistent (Johnstone and Lu, 2009)

Low-rank model is always high-dimensional along one axis

Regularization Needed
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Sparse and Functional PCA

Sparse and Functional PCA: Allen and W., (DSW 2019)

argmax
u∈Bn

Su ,v∈B
p
Sv

uTXv − λuPu(u)− λvPv(v)

where
Bn

Su =
{

x ∈ Rn : xTSux = xT(I + αuΩu)x ≤ 1
}

Sparse and Functional PCA:

• Smoothness in u - structure Su + strength αu

• Sparsity in u - structure Pu + strength λu

• Smoothness in v - structure Sv + strength αv

• Sparsity in v - structure Pv + strength λv

Well-posed and non-degenerate
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Computing SFPCA

SFPCA: argmax
u∈Bn

Su ,v∈B
p
Sv

uTXv − λuPu(u)− λvPv(v)

Bi-concave in u and v =⇒ alternating maximization strategy

Projection + (accelerated) proximal gradient to solve sub-problems

Theorem

1. The u-update converges to a solution of

argmin
u∈Bn

Su

1
2∥Xv − u∥2

2 + λuPu(u) +
αu
2 uTΩuu

2. u-update finds global optimum for fixed v
3. Converges to block-coordinate-wise global optima (Nash points)

Fast!

18



Computing SFPCA

SFPCA: argmax
u∈Bn

Su ,v∈B
p
Sv

uTXv − λuPu(u)− λvPv(v)

Bi-concave in u and v =⇒ alternating maximization strategy

Projection + (accelerated) proximal gradient to solve sub-problems
Theorem

1. The u-update converges to a solution of

argmin
u∈Bn

Su

1
2∥Xv − u∥2

2 + λuPu(u) +
αu
2 uTΩuu

2. u-update finds global optimum for fixed v
3. Converges to block-coordinate-wise global optima (Nash points)

Fast!
18



Multi-Rank SFPCA

Orthogonality of PCs: interpretation and statistical independence

Can we do the same for SFPCA?

Multi-rank extension of SFPCA:

MR-SFPCA: argmax
U∈Vn×k

Su ,V∈Vp×k
Sv

Tr(UTXV)− λuPu(U)− λvPv(V)

where Vn×k
Su

is the kth order generalized Stiefel manifold in Rn:

U ∈ Vn×k
Su

⇔ UTSuU = Ik

Generalized Stiefel manifold constraint =⇒ manifold optimization (Absil
et al., 2007)

As with R1-SFPCA, alternating (partial) maximization
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Manifold Proximal Gradient

Standard SFPCA u-subproblem updates:

u := prox
λu
Lu Pu(·)

(
u + L−1

u (Xv̂ − Suu)
)

û :=

{
u ∥u∥Su ≤ 1
u/∥u∥Su otherwise

Proximal + projected gradient descent

Multi-Rank SFPCA U-subproblem updates - Manifold Prox Gradient:
(Chen et al., 2020a)

D̂ = argmin
D∈Rn×k

−⟨XV̂,D⟩F + λUPU(U(k) + D)

s.t. DTSuU(k) + (U(k))TSuD = 0
U(k+1) = RetrU(k)(ηD̂)

One step of each subproblem =⇒ convergence to stationary point:

• Constraint set smooth =⇒ Stationary points isolated
• Guaranteed descent at each iteration (Chen et al., 2020b)
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Manifold ADMM

Easier U-updates from Manifold ADMM: (Kovnatsky et al., 2016)

U(k+1) = argmin
U∈VSu

n×k

−Tr(UTXV) +
ρ

2∥U − W(k) + Z(k)∥2
F

W(k+1) = argmin
W∈Rn×k

λUPU(W) +
ρ

2∥U(k+1) − W + Z(k)∥2
F

= prox
λU/ρPU(·)

(
U(k+1) + Z(k)

)
Z(k+1) = Z(k) + U(k+1) − W(k+1)

First step is a generalized unbalanced Procrustes problem - analytical
solution via SVD of S−1/2

u XV̂ + ρS1/2
u (W(k) − Z(k))

Typically converges quickly and to a good solution (no theory)
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Deflation Techniques

Rank-1 SFPCA: argmax
u∈Bn

Su ,v∈B
p
Sv

uTXv − λuPu(u)− λvPv(v)

How to get additional nested SFPCA components?

Deflation:

• Hotelling: XHD
t := Xt−1 − Ut(UT

t Ut)−1UT
t Xt−1Vt(VT

t Vt)−1VT
t

• Projection: XPD
t := (In −Ut(UT

t Ut)−1UT
t )Xt−1(Ip −Vt(VT

t Vt)−1VT
t )

• Schur Complement: XSD
t := Xt−1 − Xt−1Vt(UT

t Xt−1Vt)−1UT
t Xt−1

HD doesn’t fully remove signal and may re-introduce if estimated PCs
non-orthogonal

Method Two-Way 0-ing One-Way 0-ing Subsequent 0-ing (∀s ≥ 0) Robust to
uT

t Xtvt = 0 uT
t Xt,Xtvt = 0 uT

t Xt+s,Xt+svt = 0 Scale of ut, vt

Hotelling 3 7 7 7

Projection 3 3 7 7

Schur 3 3 3 3
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Simulation: “On Model” Signal Recovery

Scenario 1: U∗ and V∗ Orthogonal - SNR ≈ 1.2
Signal SVD ManSFPCA

HD PD SD ManSFPCA

CPVE
PC1 15.92% 21.05% 21.87%

37.12%PC2 22.21% 29.42% 30.59%
PC3 26.80% 35.57% 37.09%

rSS-Error U 129.54% 129.55% 128.35% 68.66%
V 143.01% 143.72% 141.15% 36.98%

23



Simulation: ‘Off-Model” Signal Recovery

Scenario 2: U∗ and V∗ Not Orthogonal - SNR ≈ 1.7
Signal SVD ManSFPCA

HD PD SD ManSFPCA

CPVE
PC1 8.85% 19.74% 29.80%

50.85%PC2 13.03% 28.30% 39.87%
PC3 16.16% 34.22% 46.48%

rSS-Error U 215.73% 206.30% 205.74% 97.77%
V 211.15% 207.77% 204.38% 78.26%
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Implications

Principaled Approach to Multi-Rank PCA:

• Unifies many regularized PCA variants
• Extension to multiple PCs without loosing orthogonality
• Deflation techniques applicable to all PCA techniques

Tensor extensions:

• Rank-1 SFPCA yields regularized CP
• MR-SFPCA yields regularized Tucker

Additional Multivariate Methods:

• CCA, LDA, PLS, etc. all SVD - can all be similarly treated
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Multivariate Models for Gas
Markets



Natural Gas Markets

LNG Markets:
• 32% of all US Electricity

(1.273 PWh in 2017)
• 3M Miles of NG

Pipelines
• 150+ Trading Spots

We want to capture:

• High-Dimensional Multivariate Time Series
• Irregular Data Availability

• NG Futures Priced Near-Continuously on Lit Markets
• NG Spots Traded Over-the-Counter

• GARCH Type Behavior + Single-Factor Structure

 Realized Beta GARCH Model (Hansen et al., 2014) combining:

• Intra-Day Futures Realized Volatility
• End-of-Day Spot Volatility
• 2nd Moment Single-Factor Dynamics
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Henry Hub:

• $14B+ Futures Volume Daily
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Natural Gas Markets
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Daily Return
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Equity-like dynamics: vol clustering, heavy-tails, 2nd moment
autocorrelation

We want to capture:

• High-Dimensional Multivariate Time Series
• Irregular Data Availability

• NG Futures Priced Near-Continuously on Lit Markets
• NG Spots Traded Over-the-Counter

• GARCH Type Behavior + Single-Factor Structure

 Realized Beta GARCH Model (Hansen et al., 2014) combining:
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Natural Gas Markets
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High inter-spot correlation: PC1 (74%) suggests single-factor model

We want to capture:

• High-Dimensional Multivariate Time Series
• Irregular Data Availability

• NG Futures Priced Near-Continuously on Lit Markets
• NG Spots Traded Over-the-Counter

• GARCH Type Behavior + Single-Factor Structure

 Realized Beta GARCH Model (Hansen et al., 2014) combining:

• Intra-Day Futures Realized Volatility
• End-of-Day Spot Volatility
• 2nd Moment Single-Factor Dynamics
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Bayesian Realized Beta GARCH

• Bi-Variate GARCH Model (Multivariate Skew Normal Specification):

• “Realized” (High-Frequency) Volatility: improved estimate of σ2
t

• “Beta” Volatility linkage: Volatility at Henry =⇒ volatility in spots

• Bayesian Estimation:
• Priors calibrated to S&P 500 (equity) markets: improve estimation
• Coherent uncertainty propagation
• Improved out of sample forecasts

27
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Application to Tail Forecasting

Does it work?

Fitting strategy:

• Fit to 250 window: refit every 50 days
• One-day rolling predictions for out-of-sample

Measures of Fit:

• In-sample VaR Test (Kupiec, 1995)
• Binomial test for number of VaR exceedances

• Out-of-sample VaR Test (Kupiec, 1995)
• Estimated out-of-sample log-likelihood
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Application to Tail Forecasting
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Application to Tail Forecasting
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Implications

• Multivariate and Multi-Resolution
Model for NG Volatility

• Daily and intra-day volatility
measures

• Multivariate Treatment of 50+ NG
Trading Hubs

• Bayesian Approach

• Market Calibrated Priors

• Improved Out-of-Sample Prediction

• VaR Estimates: more accurate +
more conservative

• Amenable to all commodities markets
with irregular data availability

29
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Complex Convex Analysis



Motivation

Complex-data arise in many domains:

• Signal and radar processing (Schreier and Scharf, 2010; Candès et al.,
2015; Mechlenbrauker et al., 2017)

• Neuroscience (Yu et al., 2018; Adrian et al., 2018)

• Geostatistics (de Iaco et al., 2003; Mandic et al., 2009)

• Astronomy (Zechmeister and Kürster, 2009)

• Econometrics (Granger and Engle, 1983)

Major sources:

• Spectral analysis (Fourier transforms)
• 2D directional data
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Why Complex?

Why not treat complex data as real?

• Discards phase data (Canolty et al., 2006)
• Corrupts statistical relationships:

Raw Abs

−1 0 1 −1 0 1

−2

−1

0

1

2

X

Y

• Natural domain for “spectral” phenomena
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Proper and Improper RVs

Let Z be a univariate complex random variable:

• Secretly “multivariate”: correlation between ℜ(Z) and ℑ(Z)

Important case: proper (circular) RVs are those where ℜ(Z) ⊥⊥ ℑ(Z)
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)

Probability Countours of Proper and Improper Complex RVs

Complex variables often arise as Fourier transform of stationary processes

• Only relative phase of multivariate signal matters
• Absolute phase is meaningless

Law[Z] = Law[eiθZ] =⇒ Z proper

32
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Complex Gaussian Distribution

The complex Gaussian is a three parameter distribution:

• Mean: µ = E[Z]

• Covariance: Σ = E[(Z − µ)(Z − µ)H] = E[(Z − µ)(Z − µ)
T
]

• Pseudo-Covariance: Γ = E[(Z − µ)(Z − µ)T]

Requirements:

• Σ is positive-definite: Σij = E[zizj] - non-negative when i = j
• Γ is indefinite: Γij = E[zizj] - possibly negative when i = j
• Additionally Σ− ΓHΣ−1Γ ⪰ 0

Proper complex normal (Γ = 0) almost universally assumed in statistics
(Wooding, 1956; Goodman, 1963; Graczyk et al., 2003)

Non-stationary DSP sometimes uses general case (van den Bos, 1995;
Schreier and Scharf, 2010; Adali et al., 2011)
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Complex Convex Analysis: Subgradient Analysis

Penalized M-Estimation Paradigm:

β̂ = argmin
β∈Rp

L (β;X, y) + λP(β)

What if X, y,β complex?

Well defined if L ,P → R (e.g. norms!)

Analysis: first order sub-gradient conditions

γ is a sub-gradient of f at x if

f(y) ≥ f(x) + γ(y − x) for all y

If x, y are complex, this is ill-defined!
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The Wirtinger Fix

Wirtinger (1927) studied differentiability of functions C → R

Never Cauchy-Riemann differentiable (holomorphic) =⇒ traditional
complex analysis does not apply

Wirtinger’s idea: write f(z) = f(z, z) and differentiate with respect to z
while holding z fixed

Occasionally used as CR-calculus (Kreutz-Delgado, 2009)

GOAL: rigorously define this derivative and connect it to optimization
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The Wirtinger Fix

Cp is an inner product space over a field F:

• Can add vectors (elements of Cp) and multiply by F

• Inner product ⟨·, ·⟩ : Cp × Cp → F

Typically F = C

In this work, F = R!

⟨a,b⟩ = aHb + aT b
2

Sub-gradient inequality becomes

f(w) ≥ f(z) + ⟨γ,w − z⟩ for all w ∈ Cp

All terms real =⇒ well-defined!
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The Wirtinger Fix

Is this valid?

Identity and existence of minimizer are topological properties

⟨a, a⟩ =
p∑

i=1
|ai|2

• Real inner product =⇒ the same norm
• Same norm =⇒ same topology
• Same topology =⇒ minimizer unchanged

We have freedom to change algebraic structure used to analyze problem

Likelihood still defined with “regular” complex multiplication
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The Wirtinger Fix

Convex Analysis for Wirtinger (Cp → R) Functions:

• W. Theorem 2.2: If Wirtinger f is convex, it has sub-gradients.
• W. Theorem 2.6: Sub-gradients given by the Wirtinger (formal)

derivative.
• W. Theorem 2.1: If the Wirtinger derivative is 0, global minimum.
• W. Theorem 2.8: Key result for sparse models:

∂|z| =
{
∠z = z/|z| z ̸= 0
{w ∈ C : |w| ≤ 1} z = 0

Change definition of “multiplication”
convex analysis still “works!”
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Example: Complex OLS

argmin
β∈Cp

∥y − Xβ∥2
2

Set Wirtinger derivative to 0:

f = ∥y − Xβ∥2
2

= (y − Xβ)H(y − Xβ)

= (yH − βXH)(y − Xβ)

0 =
∂f
∂β

= −yHX + β
TXHX

=⇒ β = (XHX)−1XTy
β = (XHX)−1XHy

Intuition from real-domain translates to complex-domain!
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Concentration Inequalities: Regression Noise (W., Lemma 3.9)

Suppose Z is mean-zero sub-Gaussian with variance proxy σ2:

(a) If Z is real:
P[|Z| ≥ t] ≤ 2 exp{−t2/2σ2}

(b) If Z is proper and complex:

P[|Z| ≥ t] ≤ 4 exp{−t2/2σ2}

(c) If Z is complex:

P[|Z| ≥ t] ≤ 2 exp{−t2/16σ2}

Proper and complex Z concentrates like real 2-vector.

Penalty for unknown dependence in ℜ(Z) and ℑ(Z)

Similar rates for effective noise ∥XHϵ∥∞ depending on ϵ
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Concentration Inequalities: Sample Covariance (W., Lemma 4.3)

Suppose Z is mean-zero Gaussian vector with variance Σ∗:
[σ2 = max(Σ∗

ii)]

(a) If Z is real:
P[∥Σ̂−Σ∗∥max ≥ tσ2] ≤ 3p2e−nt2/8

(b) If Z is proper and complex :

P[∥Σ̂−Σ∗∥max ≥ tσ2] ≤ 3p2e−nt2/4

(c) If Z is complex:

P[∥Σ̂−Σ∗∥ ≥ tσ2] ≤ 3p2e−nt2/64

Better concentration for proper complex Z than real Z!

Intuition: ℜ(Z) ⊥⊥ ℑ(Z) =⇒ double sample size
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The Complex Lasso

Real Lasso: (Tibshirani, 1996; Chen et al., 1998)

β̂ = argmin
β∈Rp

1
2n∥y − Xβ∥2

2 + λ∥β∥1

ℓ1-norm penalty =⇒ β̂ will be sparse (have exact zeros):

• Compressed Sensing: can estimate β∗ well even with p ≪ n elements
• Automatic Variable Selection: can guess the exact zeros in β∗ so

long as X is not “too correlated”

Rich theoretical literature Fu and Knight (2000), Greenshtein and Ritov (2004), Zhao and Yu (2006), Bickel et al.

(2009), Zhang and Huang (2008), Bunea et al. (2007), Meinshausen and Yu (2009), and van de Geer and Bühlmann (2009) etc.

Results all translate to the complex lasso (CLasso)!

β̂ = argmin
β∈Cp

1
2n∥y − Xβ∥2

2 + λ∥β∥1
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The Complex Lasso

W., Theorem 3.3: Under standard assumptions (Wainwright, 2009), the
Complex-Lasso (CLasso) is model selection consistent with probability

(a) ≥ 1 − 2 exp{−(τ − 2)/2 log(p − s)} for real ϵ (real X, y)

(b) ≥ 1 − 4 exp{−(τ − 2)/2 log(p − s)} for real ϵ (complex X, y)
(c) ≥ 1 − 4 exp{−(τ − 16)/16 log(p − s)} for complex ϵ

(d) ≥ 1 − 8 exp{−(τ − 2)/2 log(p − s)} for proper complex ϵ

ϵ
iid∼ subG(0, σ2) λmin(XH

S XS/n) ≥ c > 0 max
j∈Sc

∥(XH
S XS)

−1XH
S Xj∥1 ≤ 1−γ

First precise finite sample results for CLasso: previously studied by Yang
and Zhang (2011), Maleki et al. (2013), and Mechlenbrauker et al. (2017)
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Model Selection Consistency of CLasso
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The Complex Graphical Lasso

Suppose Z is drawn from a p-variate complex Gaussian with precision
matrix Θ∗ = (Σ∗)−1. CGLasso gives a sparse estimate of Θ∗:

Θ̂ = argmin
Θ∈Cp×p

⪰0

− log detΘ+ Tr(Σ̂Θ) + λ∥Θ∥1,off-diag

where Σ̂ is the sample covariance (Yuan and Lin, 2007; Friedman et al.,
2008; Ravikumar et al., 2011).

W. Theorem 4.1: If Z is a proper complex Gaussian satisfying standard
assumptions, then the CGLasso recovers the true sparsity pattern of
Θ∗ with probability

≥ 1 − 3p2 exp

{
− log p

64σ2 − δn
256σ2

}
Similar results for neighborhood selection (regularized pseudo-likelihood)
(Meinshausen and Bühlmann, 2006)

First theoretical results for CGLasso: Tugnait (2018, 2019a, 2019b)
gave experimental results and algorithms
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Model Selection Consistency of CGLasso
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Improper and Dependent Observations

In addition to incoherence of Θ∗, CGLasso requires only that

∥Σ̂−Σ∗∥max < Cσ
√

log p
n for fixed C

This condition can be satisfied under weaker assumptions,

• Improper Z: consistent with same rate, worse constants
• Time series spectrum (Fiecas et al., 2019): O(p2/n)

W. Theorem 4.1 + Fiecas et al. (2019) + Dahlhaus (2000)
Suppose Z = {Zt}T

t=1 is a stationary Gaussian linear p-dimensional time
series with spectrum Γ(k) ∈ Cp×p

⪰0 , such that Γ−1(k) satisfies the
incoherence conditions at all k. Let Γ̂(k) be the sample avereged
periodogram based on T observations. Then the graphical model
Ĝ = (V, Ê) with

(i, j) /∈ Ê ⇔ Θ̂
(k)
ij = 0 for Θ̂(k) = CGLasso(Γ̂(k)) for all k < T/2

correctly estimates the conditional independence structures in Z at all
lags with probability ≥ 1 − Cp2/T for T sufficiently large.
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Implications

Developed Wirtinger convex analysis and applied it to CLasso and
CGLasso estimators:

• Foundational Optimization and Statistical Theory for Complex
Machine Learning

• First Finite-Sample Results for Complex M-Estimation
• First Statistical Study of Improper Gaussian Distributions
• Exciting Implications for Multivariate Time Series
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