STA 9750 Week 13 Pre Assignment: Introduction to Statistical Modeling in R

Due Date: 2025-12-03 (Wednesday) at 11:59pm

Submission: CUNY Brightspace

In our final week, we are going to look into predictive modeling (i.e., black-box machine learning) with R. Specifically, we are going to introduce the tidymodels framework in class, which provides a consistent toolkit for interacting with a wide range of modeling tools. Before we get to tidymodels, it will be useful to remember the basic modeling functionality in “basic R”.

You have hopefully seen some of this material previously in your STA 9708 or STA 9700 courses. If you haven’t, the mathematical details of what are happening here are not important for our purposes and I’d encourage you to focus on the code and user-interface instead.

Statistical Tests in R

When studying dplyr, we performed many comparisons between penguin groups: e.g.,

library(tidyverse)

penguins |>
    drop_na() |>
    group_by(species) |> 
    summarize(mean_body_mass = mean(body_mass))
# A tibble: 3 × 2
  species   mean_body_mass
  <fct>              <dbl>
1 Adelie             3706.
2 Chinstrap          3733.
3 Gentoo             5092.

While we can compute the difference in averages,1 we may reasonably ask whether this difference rises to the level of statistical significance: that is, is there enough evidence to say that there is a systematic difference, or could the difference be plausibly due to getting a few extra-chunky penguins?

This type of statistical question is a deep and fundamental part of statistics, generally known as inference, and it is a topic you will cover at great length in your other courses. In this note, we simply focus on the computational steps needed to perform tests.

We will implement two of the most widely used types of tests here, though many others can be implemented using the same framework.

For each of these, we will make use of the infer package, though base R equivalents are available.

  • A \(t\)-test
  • A proportion test

\(t\)-Test

Perhaps the most fundamental task in statistics is to ask whether two groups are systematically different: this is the world of two-sample testing. ‘Systematically different’ is a somewhat slippery term requiring more more specificity: if we interpret it to mean “having different means”, then we arrive at so-called \(t\)-tests: tests of whether two groups have different means.

\(t\)-tests are typically performed under the assumption that each observation is normally distributed around its groups respective mean. This assumption, like most normality assumptions, is impossible to verify, but the magic of statistics is that – with enough data in conditions that aren’t too terrible2 – this is often a reasonable assumption to make. When we assume normality, the distribution of the estimated difference in means divided by the estimated standard deviation follows a \(t\)-distribution, giving this test its name.

With the infer package, this type of test is implemented with the t_test function.3 Like most tidyverse functions, the first argument to this function is a data frame. The second argument is a formula: we haven’t done much with formulas to this point, but you might remember them from facet_grid in ggplot2.

A formula is an expression with a variable name on each side separated by a ~.4 Conventionally, the variable on the left-hand side is the response and the variable on the right-hand side is the explanatory variable. In a \(t\)-test, the response is the quantity we care about, while the explanatory variable is the group identifier.5 So, for our beloved penguins, if we want to see if males weigh more than females, we would use the formula:

body_mass ~ sex

This gives us:

library(infer)
penguins |> t_test(body_mass ~ sex)
Warning: The statistic is based on a difference or ratio; by default, for
difference-based statistics, the explanatory variable is subtracted in the
order "female" - "male", or divided in the order "female" / "male" for
ratio-based statistics. To specify this order yourself, supply `order =
c("female", "male")`.
# A tibble: 1 × 7
  statistic  t_df  p_value alternative estimate lower_ci upper_ci
      <dbl> <dbl>    <dbl> <chr>          <dbl>    <dbl>    <dbl>
1     -8.55  324. 4.79e-16 two.sided      -683.    -841.    -526.

Note the warning message here: we are looking at the difference in groups, but we have not said which groups or in what order to compare them. Following the text of the warning, it is a good idea to specify the order of the comparisons:

library(infer)
penguins |> t_test(body_mass ~ sex, order=c("male", "female"))
# A tibble: 1 × 7
  statistic  t_df  p_value alternative estimate lower_ci upper_ci
      <dbl> <dbl>    <dbl> <chr>          <dbl>    <dbl>    <dbl>
1      8.55  324. 4.79e-16 two.sided       683.     526.     841.

By specifing the order in this manner, we indicate that we are looking at the average male body mass minus the average female body mass. As such, most of our results are flipped in sign from what we saw before.

Let’s look at the columns of our result:

  • estimate: this is our best guess (“point estimate”) of the inter-group difference
  • lower_ci and upper_ci: these are the lower and upper end points of a confidence interval for our estimate. By default, these are set at the conventional 95% level, but this can be changed by supplying the conf_level argument. (Test yourself: if we set conf_level=0.9 instead, what would happen to these two values?)
  • p_value: This is a \(p\)-value, indicating the strength of evidence against the null hypothesis that the averages of the two groups are equal. Smaller \(p\)-values indicate more confidence that there is a systematic difference.
  • alternative: This is honestly a bit odd, but functionally, it is an indirect way of specifying the null hypothesis tested. Here, the two.sided alternative, indicates that we tested a null of equality. If a directional alternative was provided (e.g., "greater"), we would have tested against a null of “less than or equal”.6

The use of a data.frame here means that infer plays nicely with the tools we have been using all semester long. For instance, we might question whether all penguin species have an inter-sex difference: to test this, we split our data into three parts and test them separately:

penguins |>
    group_by(species) |>
    nest() |>
    mutate(test_results = map(data, t_test, body_mass ~ sex, order=c("male", "female"))) |>
    unnest(test_results) |>
    arrange(desc(estimate))
# A tibble: 3 × 9
# Groups:   species [3]
  species   data     statistic  t_df  p_value alternative estimate lower_ci
  <fct>     <list>       <dbl> <dbl>    <dbl> <chr>          <dbl>    <dbl>
1 Gentoo    <tibble>     14.8  117.  1.87e-28 two.sided       805.     697.
2 Adelie    <tibble>     13.1  136.  6.40e-26 two.sided       675.     573.
3 Chinstrap <tibble>      5.21  62.6 2.26e- 6 two.sided       412.     254.
# ℹ 1 more variable: upper_ci <dbl>

Here, we see that Gentoos, being the largest penguins in our data, exhibit the largest sex difference. This pattern can be very useful for testing sub-group differences, though you should take at least a bit of care to avoid issues with multiplicity corrections:

From XKCD #882

This structure plays particularly nicely with ggplot2 for visualizing differences:

penguins |>
    group_by(species) |>
    nest() |>
    mutate(test_results = map(data, t_test, body_mass ~ sex, order=c("male", "female"))) |>
    unnest(test_results) |>
    ggplot(aes(x=species, 
               y=estimate, 
               ymax=upper_ci, 
               ymin=lower_ci)) + 
        geom_point(size=4) + 
        geom_errorbar() + 
        xlab("Species") + 
        ylab("Estimated Sex Difference in Mean Body Mass") + 
        theme_bw()

Proportion Tests

The prop_test function extends this paradigm to the case where the response is a binary variable. This analysis is conceptually quite similar to a \(t\)-test, but the mathematical details are based on a binomial distribution, not a normal distribution.

penguins |> 
    drop_na() |>
    mutate(is_male = (sex == "male"), 
           is_gentoo = (species == "Gentoo")) |>
    prop_test(is_male ~ is_gentoo, order=c("TRUE", "FALSE"))
# A tibble: 1 × 6
  statistic chisq_df p_value alternative lower_ci upper_ci
      <dbl>    <dbl>   <dbl> <chr>          <dbl>    <dbl>
1    0.0113        1   0.915 two.sided     -0.106    0.131

Notice here that we constructed our binary variables (is_male, is_gentoo) manually. In theory, you can pass categorical variables to prop_test directly and it will binarize them for you, but I find that behavior a bit too fragile.

In both of these tests, we can instead perform a “one-sample” test, by not specifying an explanatory variable and instead passing NULL

penguins |> 
    mutate(is_male = (sex == "male")) |>
    prop_test(is_male ~ NULL, order=c("TRUE", "FALSE"))
No `p` argument was hypothesized, so the test will assume a null hypothesis `p
= .5`.
# A tibble: 1 × 6
  statistic chisq_df p_value alternative lower_ci upper_ci
      <dbl>    <int>   <dbl> <chr>          <dbl>    <dbl>
1    0.0120        1   0.913 two.sided      0.450    0.559

Here, as the message suggests, we are testing against a null that the population rate is 50% (equal male and female). We can specify p for other nulls:

penguins |> 
    mutate(is_male = (sex == "male")) |>
    prop_test(is_male ~ NULL, order=c("TRUE", "FALSE"), 
              p=0.6666)
# A tibble: 1 × 4
  statistic chisq_df  p_value alternative
      <dbl>    <int>    <dbl> <chr>      
1      38.6        1 5.09e-10 two.sided  

So (unsurprisingly), we can say with high-confidence that there are not twice as many male penguins as females in our sample.

Linear Models in R

Another important task for which R is well suited is the fitting and usage of statistical models. As noted above, we will consider this topic in detail in class, but it is worth being familiar with the basic tool for fitting linear models in R, the lm function.

The tidymodels package includes the ames data set, which records 82 variables about 2,930 properties sold in Ames, Iowa. Clearly, predicting the sale price of these properties is of significant interest, but with so many variables of different types, this is a non-trivial modeling challenges:

Rows: 2,930
Columns: 74
$ MS_SubClass        <fct> One_Story_1946_and_Newer_All_Styles, One_Story_1946…
$ MS_Zoning          <fct> Residential_Low_Density, Residential_High_Density, …
$ Lot_Frontage       <dbl> 141, 80, 81, 93, 74, 78, 41, 43, 39, 60, 75, 0, 63,…
$ Lot_Area           <int> 31770, 11622, 14267, 11160, 13830, 9978, 4920, 5005…
$ Street             <fct> Pave, Pave, Pave, Pave, Pave, Pave, Pave, Pave, Pav…
$ Alley              <fct> No_Alley_Access, No_Alley_Access, No_Alley_Access, …
$ Lot_Shape          <fct> Slightly_Irregular, Regular, Slightly_Irregular, Re…
$ Land_Contour       <fct> Lvl, Lvl, Lvl, Lvl, Lvl, Lvl, Lvl, HLS, Lvl, Lvl, L…
$ Utilities          <fct> AllPub, AllPub, AllPub, AllPub, AllPub, AllPub, All…
$ Lot_Config         <fct> Corner, Inside, Corner, Corner, Inside, Inside, Ins…
$ Land_Slope         <fct> Gtl, Gtl, Gtl, Gtl, Gtl, Gtl, Gtl, Gtl, Gtl, Gtl, G…
$ Neighborhood       <fct> North_Ames, North_Ames, North_Ames, North_Ames, Gil…
$ Condition_1        <fct> Norm, Feedr, Norm, Norm, Norm, Norm, Norm, Norm, No…
$ Condition_2        <fct> Norm, Norm, Norm, Norm, Norm, Norm, Norm, Norm, Nor…
$ Bldg_Type          <fct> OneFam, OneFam, OneFam, OneFam, OneFam, OneFam, Twn…
$ House_Style        <fct> One_Story, One_Story, One_Story, One_Story, Two_Sto…
$ Overall_Cond       <fct> Average, Above_Average, Above_Average, Average, Ave…
$ Year_Built         <int> 1960, 1961, 1958, 1968, 1997, 1998, 2001, 1992, 199…
$ Year_Remod_Add     <int> 1960, 1961, 1958, 1968, 1998, 1998, 2001, 1992, 199…
$ Roof_Style         <fct> Hip, Gable, Hip, Hip, Gable, Gable, Gable, Gable, G…
$ Roof_Matl          <fct> CompShg, CompShg, CompShg, CompShg, CompShg, CompSh…
$ Exterior_1st       <fct> BrkFace, VinylSd, Wd Sdng, BrkFace, VinylSd, VinylS…
$ Exterior_2nd       <fct> Plywood, VinylSd, Wd Sdng, BrkFace, VinylSd, VinylS…
$ Mas_Vnr_Type       <fct> Stone, None, BrkFace, None, None, BrkFace, None, No…
$ Mas_Vnr_Area       <dbl> 112, 0, 108, 0, 0, 20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6…
$ Exter_Cond         <fct> Typical, Typical, Typical, Typical, Typical, Typica…
$ Foundation         <fct> CBlock, CBlock, CBlock, CBlock, PConc, PConc, PConc…
$ Bsmt_Cond          <fct> Good, Typical, Typical, Typical, Typical, Typical, …
$ Bsmt_Exposure      <fct> Gd, No, No, No, No, No, Mn, No, No, No, No, No, No,…
$ BsmtFin_Type_1     <fct> BLQ, Rec, ALQ, ALQ, GLQ, GLQ, GLQ, ALQ, GLQ, Unf, U…
$ BsmtFin_SF_1       <dbl> 2, 6, 1, 1, 3, 3, 3, 1, 3, 7, 7, 1, 7, 3, 3, 1, 3, …
$ BsmtFin_Type_2     <fct> Unf, LwQ, Unf, Unf, Unf, Unf, Unf, Unf, Unf, Unf, U…
$ BsmtFin_SF_2       <dbl> 0, 144, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1120, 0…
$ Bsmt_Unf_SF        <dbl> 441, 270, 406, 1045, 137, 324, 722, 1017, 415, 994,…
$ Total_Bsmt_SF      <dbl> 1080, 882, 1329, 2110, 928, 926, 1338, 1280, 1595, …
$ Heating            <fct> GasA, GasA, GasA, GasA, GasA, GasA, GasA, GasA, Gas…
$ Heating_QC         <fct> Fair, Typical, Typical, Excellent, Good, Excellent,…
$ Central_Air        <fct> Y, Y, Y, Y, Y, Y, Y, Y, Y, Y, Y, Y, Y, Y, Y, Y, Y, …
$ Electrical         <fct> SBrkr, SBrkr, SBrkr, SBrkr, SBrkr, SBrkr, SBrkr, SB…
$ First_Flr_SF       <int> 1656, 896, 1329, 2110, 928, 926, 1338, 1280, 1616, …
$ Second_Flr_SF      <int> 0, 0, 0, 0, 701, 678, 0, 0, 0, 776, 892, 0, 676, 0,…
$ Gr_Liv_Area        <int> 1656, 896, 1329, 2110, 1629, 1604, 1338, 1280, 1616…
$ Bsmt_Full_Bath     <dbl> 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, …
$ Bsmt_Half_Bath     <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
$ Full_Bath          <int> 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 3, 2, …
$ Half_Bath          <int> 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, …
$ Bedroom_AbvGr      <int> 3, 2, 3, 3, 3, 3, 2, 2, 2, 3, 3, 3, 3, 2, 1, 4, 4, …
$ Kitchen_AbvGr      <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
$ TotRms_AbvGrd      <int> 7, 5, 6, 8, 6, 7, 6, 5, 5, 7, 7, 6, 7, 5, 4, 12, 8,…
$ Functional         <fct> Typ, Typ, Typ, Typ, Typ, Typ, Typ, Typ, Typ, Typ, T…
$ Fireplaces         <int> 2, 0, 0, 2, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, …
$ Garage_Type        <fct> Attchd, Attchd, Attchd, Attchd, Attchd, Attchd, Att…
$ Garage_Finish      <fct> Fin, Unf, Unf, Fin, Fin, Fin, Fin, RFn, RFn, Fin, F…
$ Garage_Cars        <dbl> 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, …
$ Garage_Area        <dbl> 528, 730, 312, 522, 482, 470, 582, 506, 608, 442, 4…
$ Garage_Cond        <fct> Typical, Typical, Typical, Typical, Typical, Typica…
$ Paved_Drive        <fct> Partial_Pavement, Paved, Paved, Paved, Paved, Paved…
$ Wood_Deck_SF       <int> 210, 140, 393, 0, 212, 360, 0, 0, 237, 140, 157, 48…
$ Open_Porch_SF      <int> 62, 0, 36, 0, 34, 36, 0, 82, 152, 60, 84, 21, 75, 0…
$ Enclosed_Porch     <int> 0, 0, 0, 0, 0, 0, 170, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
$ Three_season_porch <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
$ Screen_Porch       <int> 0, 120, 0, 0, 0, 0, 0, 144, 0, 0, 0, 0, 0, 0, 140, …
$ Pool_Area          <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
$ Pool_QC            <fct> No_Pool, No_Pool, No_Pool, No_Pool, No_Pool, No_Poo…
$ Fence              <fct> No_Fence, Minimum_Privacy, No_Fence, No_Fence, Mini…
$ Misc_Feature       <fct> None, None, Gar2, None, None, None, None, None, Non…
$ Misc_Val           <int> 0, 0, 12500, 0, 0, 0, 0, 0, 0, 0, 0, 500, 0, 0, 0, …
$ Mo_Sold            <int> 5, 6, 6, 4, 3, 6, 4, 1, 3, 6, 4, 3, 5, 2, 6, 6, 6, …
$ Year_Sold          <int> 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 201…
$ Sale_Type          <fct> WD , WD , WD , WD , WD , WD , WD , WD , WD , WD , W…
$ Sale_Condition     <fct> Normal, Normal, Normal, Normal, Normal, Normal, Nor…
$ Sale_Price         <int> 215000, 105000, 172000, 244000, 189900, 195500, 213…
$ Longitude          <dbl> -93.61975, -93.61976, -93.61939, -93.61732, -93.638…
$ Latitude           <dbl> 42.05403, 42.05301, 42.05266, 42.05125, 42.06090, 4…

As always, we start by visualizing the data:

ggplot(ames, 
       aes(x=Sale_Price)) + 
    geom_histogram() + 
    theme_bw() + 
    xlab("Sale Price (US Dollars)") + 
    ylab("Number of Homes Sold")
`stat_bin()` using `bins = 30`. Pick better value `binwidth`.

A quick analysis of the response variable (Sale_Price) suggests that a log-transformation might be helpful, but we won’t worry about that in this.

(Not all methods require this, and skewness in \(y\) alone does not guarantee a transformation is needed - the skewness may actually reflect a skewness in an underlying predictor, not in the unmodeled noise response - but it at least flags it as something we may want to consider.)

ggplot(ames, 
       aes(x=Sale_Price)) + 
    geom_histogram() + 
    theme_bw() + 
    scale_x_log10() + 
    xlab("Sale Price (US Dollars) [Log-Scale]") + 
    ylab("Number of Homes Sold")
`stat_bin()` using `bins = 30`. Pick better value `binwidth`.

In your regression course, you might have already seen R’s built-in support for linear models via the lm function. The lm function generally takes two arguments:

  • A formula, specifying the model to be fit
  • A data argument, specifying the data used to fit the model

For this data, a simple model might predict the sale price using the size of the slot on which the house sits:

lm(Sale_Price ~ Lot_Area, data=ames)

Call:
lm(formula = Sale_Price ~ Lot_Area, data = ames)

Coefficients:
(Intercept)     Lot_Area  
  1.534e+05    2.702e+00  

We see here several useful behaviors:

  • lm automatically dropped unused variables
  • An intercept was included by default

In this formula specification, as with the tests above, the left-hand side denotes the response and anything on the right-hand side is used to specify predictors. Unlike tests, it is simple to add more features to a linear model. In fact, all we need to do is to ‘add’ them to the right hand side:

lm(Sale_Price ~ Lot_Area + First_Flr_SF + Second_Flr_SF, data=ames)

Call:
lm(formula = Sale_Price ~ Lot_Area + First_Flr_SF + Second_Flr_SF, 
    data = ames)

Coefficients:
  (Intercept)       Lot_Area   First_Flr_SF  Second_Flr_SF  
   -2.136e+04      8.578e-02      1.492e+02      8.431e+01  

If we add in a categorical (factor) variable, lm is also smart enough to handle this automatically for us.7

lm(Sale_Price ~ Lot_Area + First_Flr_SF + Second_Flr_SF + Central_Air, data=ames)

Call:
lm(formula = Sale_Price ~ Lot_Area + First_Flr_SF + Second_Flr_SF + 
    Central_Air, data = ames)

Coefficients:
  (Intercept)       Lot_Area   First_Flr_SF  Second_Flr_SF   Central_AirY  
   -6.004e+04      9.746e-02      1.440e+02      8.288e+01      4.835e+04  

Note that, unlike the numerical features we used before, you’ll see that a new variable is created Central_AirY that is a constant offset effect of having central A/C in a home.

So the formula interface lm does quite a lot of good for us! And R provides additional functionality for working with the model after we fit it:

ames_lm <- lm(Sale_Price ~ Lot_Area + First_Flr_SF + Second_Flr_SF + Central_Air, 
              data=ames)

predict(ames_lm)
          1           2           3           4           5           6 
229803.7500 118428.3170 181022.0388 293154.2649 181349.9139 178780.3095 
          7           8           9          10          11          12 
181406.7481 173065.1833 221474.1461 201345.3606 173053.0365 159966.5755 
         13          14          15          16          17          18 
158738.0319 182350.8856 205201.8392 368514.6157 200663.4351 256610.4910 
         19          20          21          22          23          24 
114554.0118 288024.0187 254917.7293 158208.8760 177499.3029 133939.1792 
         25          26          27          28          29          30 
144718.7426 141153.2402 116098.8207 113712.1539 181354.2025  99774.7213 
         31          32          33          34          35          36 
111042.6676 111042.6676 142595.2527 161426.8588 108880.0727 161426.8588 
         37          38          39          40          41          42 
282382.5441 234736.3151 268583.0127 211839.1804 211338.9723 233876.6310 
         43          44          45          46          47          48 
251981.6224 210279.2031 329892.2762 184427.4205 377822.5548 279162.6406 
         49          50          51          52          53          54 
241274.2384 186229.1424 169992.0952 180714.1869 153454.5677 171303.9220 
         55          56          57          58          59          60 
148924.5323 204047.2492 184509.9497 154857.4241 211890.4894 292010.9580 
         61          62          63          64          65          66 
295614.1202 236953.4698 298436.2053 248690.6206 215350.3252 383509.3403 
         67          68          69          70          71          72 
218801.5854 164549.7886 164030.4233 214627.9279 211429.6828 200659.9048 
         73          74          75          76          77          78 
220411.6376 177725.2523 238691.3338 121963.4856 206755.0490 121231.9759 
         79          80          81          82          83          84 
 97264.2539 195707.6921 147174.8155 172990.1652  86604.6015 227320.8173 
         85          86          87          88          89          90 
155730.3046 117831.2486 118828.4486 138757.2468 138698.4786 204887.3158 
         91          92          93          94          95          96 
213485.6812 260686.7429 259437.0662 202992.9007 179196.3409 124724.5603 
         97          98          99         100         101         102 
124721.3442 124659.1648 127642.8814 201511.1690 165855.0088 160089.3100 
        103         104         105         106         107         108 
148428.0551 110423.9684 193696.9297 201742.9923 102178.4169 165181.5438 
        109         110         111         112         113         114 
156487.6318 203877.2127 252632.0751 274329.5207 221118.5241 225481.1218 
        115         116         117         118         119         120 
191238.8183 188029.8749 182385.9189 166602.7914 180441.7483 165567.7623 
        121         122         123         124         125         126 
163320.8824 206632.2776 205535.3717 155525.4972 140899.4254 238365.0984 
        127         128         129         130         131         132 
144443.9059 311049.7264 181202.0853 112527.4412 176841.8426 142304.2466 
        133         134         135         136         137         138 
208064.1099 171610.0286 151804.1271 245402.3295 307970.4661 261714.1544 
        139         140         141         142         143         144 
220027.0805 202168.8573 153639.0296 234070.2157 178290.7984 161050.3346 
        145         146         147         148         149         150 
160517.9205 171180.3667 162969.3980 216743.9872 150753.8341 142548.5931 
        151         152         153         154         155         156 
129298.6449 131864.4134 141245.7444 130878.0757 108063.9088 145642.6823 
        157         158         159         160         161         162 
123626.0496 166557.9197 141009.8769 174543.1673 352156.8333 140379.9767 
        163         164         165         166         167         168 
168413.6066 159509.9601 118573.2013 149942.0776 158205.3969 190084.3396 
        169         170         171         172         173         174 
205670.5717 212277.0242 132023.7363 123491.2627 137171.9832 182788.6662 
        175         176         177         178         179         180 
124856.1444  96294.2600 104752.7618 122150.5553 143176.2218 187535.6726 
        181         182         183         184         185         186 
157041.5159  60677.2433  92788.5242 127492.4772 185281.9860 247827.9064 
        187         188         189         190         191         192 
196720.5035 166964.9137 147287.7189 255315.6334 164188.2250 185391.6114 
        193         194         195         196         197         198 
182971.4734  50577.9553 119848.7320 139812.7718 167684.0413 153893.0266 
        199         200         201         202         203         204 
108582.1551 172902.2593 142653.7138 186131.1138 205946.9870 166500.3657 
        205         206         207         208         209         210 
138774.5573  58258.4443  53733.3388 202265.4061 263541.6070 230930.2761 
        211         212         213         214         215         216 
 86725.9597 130325.5127  53360.6764 154274.5273 185307.0686  72759.6340 
        217         218         219         220         221         222 
204749.0172 195535.8782 139015.3057 189806.5348 120429.5007 141709.2101 
        223         224         225         226         227         228 
117479.9739 141769.9146 113452.1311 186689.4894 152726.6797 145357.0858 
        229         230         231         232         233         234 
256753.3597 203757.1068  49697.3704 142848.9111 198276.1879 222385.4491 
        235         236         237         238         239         240 
187814.2129  61203.5706 144039.7784 153931.2289 157508.7631 157957.7073 
        241         242         243         244         245         246 
163803.4503 207105.0256 176260.2793 123272.1819 192429.0172 195771.2910 
        247         248         249         250         251         252 
197744.1095 215677.4994 132575.7932 233198.9338 162871.0906 165817.1767 
        253         254         255         256         257         258 
164944.8523 360331.8074 160214.3343 140613.0589 128311.3711 183934.5827 
        259         260         261         262         263         264 
177673.3569 137496.1051 146822.9828 118045.6602 115145.3802 274076.0191 
        265         266         267         268         269         270 
219902.7750 198302.8589 226872.4269 228610.1360 110817.6535 110816.7764 
        271         272         273         274         275         276 
229471.4917 202764.4933 192723.4420  32950.6971 131977.8182 180470.8562 
        277         278         279         280         281         282 
161463.3988  82311.8743 146702.7054 149873.4807 127133.9827 150520.1856 
        283         284         285         286         287         288 
161144.1902  58775.1821 208826.7241 127007.9346 128502.3161  65143.3244 
        289         290         291         292         293         294 
191613.9924 112306.0805 261293.8679 181950.7649 295832.1748 240934.0497 
        295         296         297         298         299         300 
237569.4645 255692.9716 263827.8746 181868.2855 137543.2962 160145.4733 
        301         302         303         304         305         306 
249102.6418 133100.5433  66839.5299 125351.4759 125160.7682 139257.1254 
        307         308         309         310         311         312 
 91105.3784 126206.6319 225639.2419 211462.6720 174234.7749 213783.2526 
        313         314         315         316         317         318 
138364.0054 284384.5001 236745.0035 183238.3311 164031.2434 154385.2890 
        319         320         321         322         323         324 
199861.9075 196715.8522 208479.2236 280109.8595 171765.1256 195157.5422 
        325         326         327         328         329         330 
196102.6548 182948.3586 112354.0406 124583.1404 113461.0722 112305.5056 
        331         332         333         334         335         336 
 79146.8171 112346.8286 112345.8540 114806.0930 161880.6036 109481.9402 
        337         338         339         340         341         342 
264897.5271 133031.2793 164688.2672 248834.0721 208871.5765 116547.9155 
        343         344         345         346         347         348 
195741.7754 335929.7217 180291.9790 240242.0271 182570.2829 241115.4852 
        349         350         351         352         353         354 
160412.6643 352090.3997 227691.3527 201801.3068 238717.5042 149588.5721 
        355         356         357         358         359         360 
185740.2736 182779.1258 168079.1738 152627.3482 157995.3297 160327.3186 
        361         362         363         364         365         366 
170627.6234 154723.0069 157210.8963 215094.0929 197054.3849 184661.0612 
        367         368         369         370         371         372 
311616.0568 284007.3011 210142.8805 207540.0005 255018.7918 218291.0555 
        373         374         375         376         377         378 
192596.3102 220554.6985 229990.8034 229931.9362 305058.1958 201593.9212 
        379         380         381         382         383         384 
235130.1945 352602.8729 219947.3141 186547.6411 210587.9367 207194.1293 
        385         386         387         388         389         390 
200279.8421 208979.4886 198599.4776 222582.2406 149955.7220 161129.5546 
        391         392         393         394         395         396 
183643.0433 249118.8555 192434.1680 133408.4810 136783.6738 158944.2162 
        397         398         399         400         401         402 
140295.3104 113374.7480 113367.1461 113480.1995 113712.1539 113565.9642 
        403         404         405         406         407         408 
 99774.7213 148395.8922 134861.2800  99774.7213  99774.7213 134861.2800 
        409         410         411         412         413         414 
126701.6215 165939.4646 161426.8588 140407.9503 150323.5315 161433.5835 
        415         416         417         418         419         420 
165944.9223 160184.5207 161435.0454 108862.9197 117416.6250 150587.1258 
        421         422         423         424         425         426 
236847.1116 329021.4520 369955.7292 335607.6859 227415.4381 220032.3818 
        427         428         429         430         431         432 
283515.2649 295835.2198 239441.6271 280313.5801 280300.9103 285462.7619 
        433         434         435         436         437         438 
374596.2127 329464.9188 239352.8743 246490.9256 291547.6354 236575.4763 
        439         440         441         442         443         444 
240242.5908 235848.0747 209771.6708 249906.8861 262794.9413 253728.1141 
        445         446         447         448         449         450 
223858.8874 242934.6819 205467.0274 333977.1330 342790.5303 256007.3157 
        451         452         453         454         455         456 
220450.5730 184479.3666 176844.8639 176819.6218 184811.0224 177959.5325 
        457         458         459         460         461         462 
348506.3594 306510.7071 260251.2234 198545.6293 236403.7758 179519.9143 
        463         464         465         466         467         468 
190911.9210 169957.0096 154512.2907 158172.7432 157849.9864 160540.1160 
        469         470         471         472         473         474 
212526.2395 214536.9447 212477.3147 205135.2062 164249.7394 153452.5210 
        475         476         477         478         479         480 
151484.8219 238675.1542 148547.7527 177198.1311 154251.1424 173079.2743 
        481         482         483         484         485         486 
161820.4384 142962.9936 177965.5750 236001.8595 209284.6855 222159.5235 
        487         488         489         490         491         492 
148576.9906 199791.8342 164634.6798 154857.4241 256178.1591 184021.1264 
        493         494         495         496         497         498 
222318.7215 154866.9752 262689.3630 312361.8004 301791.9083 272993.1156 
        499         500         501         502         503         504 
283919.8853 261574.4225 286348.0496 292377.2518 226831.6607 248649.3015 
        505         506         507         508         509         510 
298722.2289 204353.7246 200579.2080 233556.9333 227990.0523 216381.0173 
        511         512         513         514         515         516 
234317.0135 195350.4447 220590.4265 347857.0525 199570.8917 168973.1942 
        517         518         519         520         521         522 
164417.9255 195814.6074 178314.1887 190982.9249 209796.7032 243438.7352 
        523         524         525         526         527         528 
197494.1147 218389.4449 193633.1038 217292.6459 185485.3740 253412.6367 
        529         530         531         532         533         534 
228606.7396 218478.0927 164814.5338 212730.6807 175697.7451 164587.7980 
        535         536         537         538         539         540 
153297.5009 155744.8704 192723.4055 206965.1324 162043.0514 149953.5484 
        541         542         543         544         545         546 
149953.5484 149892.9284 197765.2774 221066.1655 254843.9522 195578.9201 
        547         548         549         550         551         552 
183320.9802 128457.1961 180762.7425 162885.1459 147974.7582 203973.9335 
        553         554         555         556         557         558 
110196.3413  53703.0899 130338.7567 130076.9797 113517.1368 113573.6635 
        559         560         561         562         563         564 
136054.9756 120358.3550 153973.0392 113495.8906 120295.8832 279773.9540 
        565         566         567         568         569         570 
194480.4491 321691.6964 127518.4179 127425.7336 237158.1265 169533.2751 
        571         572         573         574         575         576 
155860.4068 160091.0643 152566.7259 192736.2418 233610.1168 165171.9927 
        577         578         579         580         581         582 
240302.8742 287188.9224 222498.5078 169044.9027 197041.3253 203557.9875 
        583         584         585         586         587         588 
230155.6802 239351.0247 150079.8212 285759.4242 238238.6340 181574.9342 
        589         590         591         592         593         594 
164240.9090 259662.8212 181291.8814 231150.8040 176596.7601 113383.7143 
        595         596         597         598         599         600 
214974.3297 122357.4477 231218.6670 179944.0004 182457.2291 117732.4243 
        601         602         603         604         605         606 
113480.6868 113575.7101 185303.3509 238388.0015 245101.3524 207527.6320 
        607         608         609         610         611         612 
178239.4223 175328.2800 155510.1281 216937.0234 197510.0538 139105.8754 
        613         614         615         616         617         618 
216308.7701 127461.2528  90750.0725 148493.5889 206154.1634 232711.0057 
        619         620         621         622         623         624 
225915.5109 140401.5416 195409.0872 149471.2050 217213.8026 198513.4232 
        625         626         627         628         629         630 
189915.0371 215326.9245 226675.1499 239301.7850 190022.7981 211817.4990 
        631         632         633         634         635         636 
153852.1890 201900.7158 180828.8734 131440.7555 224187.9560 164428.3094 
        637         638         639         640         641         642 
162201.0632 188114.3873 162073.9461 189142.1985 175856.2936 257863.7770 
        643         644         645         646         647         648 
141985.6357 179228.3382 149665.4276 134004.4920 185945.2361 103293.9184 
        649         650         651         652         653         654 
137473.8606 163429.0776 192091.2947 164903.6739 161995.9783 129016.4988 
        655         656         657         658         659         660 
102856.6014 163989.6950 142703.9316 119007.8728 103202.7787 144493.9028 
        661         662         663         664         665         666 
178342.7297 185881.6611  26719.0959 154018.4617  62804.2180  93730.5472 
        667         668         669         670         671         672 
276326.9149 187962.2230 139147.0861 289475.7677 125994.2522 148402.7324 
        673         674         675         676         677         678 
177169.5026 202797.3462 153587.6535 138633.9986  90513.1535  81376.7862 
        679         680         681         682         683         684 
 90382.1675 216201.0690 138886.5908 181808.0049  94387.4322 159392.6731 
        685         686         687         688         689         690 
154347.2464 161266.7380 142267.3240 199380.0785 124612.5143 139519.5539 
        691         692         693         694         695         696 
 69305.1066 140101.1908 132923.8534 155504.0586 161455.8451 123892.1311 
        697         698         699         700         701         702 
147550.0335 157274.0983 171076.9063 221366.8859 148934.1303 210130.5864 
        703         704         705         706         707         708 
146940.7211 109802.1154  75293.0729 145866.5144 153383.0158 112978.5296 
        709         710         711         712         713         714 
 28641.7802  57414.4393 116419.7174 103153.8538 154038.6618 165272.0379 
        715         716         717         718         719         720 
139044.1692 183611.1036 240533.2935 222044.9983 135964.8531 190356.8292 
        721         722         723         724         725         726 
106100.2235 162831.8116  87790.8351 206688.6549 139128.4329 162958.0838 
        727         728         729         730         731         732 
 44380.2111  55612.8120 186489.2244 146758.6148 127116.7545 187016.4490 
        733         734         735         736         737         738 
 77874.6298 144863.0895 134368.0740 154609.6345 156310.1878 133749.0677 
        739         740         741         742         743         744 
119032.1012 176274.1629 181629.5906 179683.1574  55725.8122 114868.8719 
        745         746         747         748         749         750 
132144.4213 180734.4960 143474.6769 206249.0585 177797.2401 199641.1730 
        751         752         753         754         755         756 
195840.2716 228089.3177 199580.8574 183079.3130 218935.2173 110993.5685 
        757         758         759         760         761         762 
152400.5954 154757.6717 200430.1379 117222.6800 151648.4705  90071.8880 
        763         764         765         766         767         768 
162112.9301 162112.9301 155178.0530  71078.0482  96643.2824  75039.1381 
        769         770         771         772         773         774 
200322.4398 150546.4998 184956.7911 140886.8235 118487.7143 137943.5637 
        775         776         777         778         779         780 
112531.8269 112964.7730 146644.4628 170588.5245 153626.9682 287970.8736 
        781         782         783         784         785         786 
 35851.6889 205026.9627 202807.9930 166905.7497 113459.7861 258127.2256 
        787         788         789         790         791         792 
239125.8461 188929.3611 232418.6942 143709.8622 172934.3332 179543.1558 
        793         794         795         796         797         798 
 85958.2215 145805.5819  62728.4770 139734.7067 201762.6290 136087.3376 
        799         800         801         802         803         804 
160457.3608 142099.9413 182803.8346 257587.0994 305878.5237 197775.0939 
        805         806         807         808         809         810 
210974.8405 226437.8826 236639.4193 209971.9123 165199.4469 241692.9789 
        811         812         813         814         815         816 
209971.9123 209971.9123 243054.0424 165921.4056 206803.6562 291793.3025 
        817         818         819         820         821         822 
291411.6499 291415.2559 231228.0897 236669.8322 223961.0400 236975.2033 
        823         824         825         826         827         828 
200536.9105 188784.9732 254021.8875 248600.1242 220080.3910 174676.0493 
        829         830         831         832         833         834 
169840.5364 166379.9983 205096.2312 150298.3468 226227.3823 193381.2711 
        835         836         837         838         839         840 
238161.8112 139241.0374 131779.0681 192694.3970 177524.5696 200360.4344 
        841         842         843         844         845         846 
147290.5003 131614.8483 189660.7017 205400.4476 195194.5917 192706.8034 
        847         848         849         850         851         852 
177517.2158 215714.4159 199677.7003 195758.9668 197233.9354 204185.7705 
        853         854         855         856         857         858 
138847.8845 120464.8048 120564.3171 138883.9446 113371.0445 171754.8539 
        859         860         861         862         863         864 
114201.6946 117709.4238  99570.0970  99691.4345 221365.8919 235754.5434 
        865         866         867         868         869         870 
246864.2852 223961.8246 257981.5066 183436.0914 202050.1028 207655.7474 
        871         872         873         874         875         876 
205983.2041 252714.8037 193153.0892 222362.1065 186904.9104 163674.8033 
        877         878         879         880         881         882 
223914.6491 110817.6535 110817.6535 219927.5445 185205.6672 205076.3789 
        883         884         885         886         887         888 
156557.0597 142223.3441 151262.5134 203202.2149 106643.7569 178549.2760 
        889         890         891         892         893         894 
149903.1680 154759.3213 150964.8564 234048.7450 142991.2762  89707.5921 
        895         896         897         898         899         900 
115041.0982 186392.9428 133960.3546 113084.5127  76854.6922 230939.4816 
        901         902         903         904         905         906 
214033.8218 127379.1916 130414.6007 148848.7080 182422.4684 144832.1326 
        907         908         909         910         911         912 
166520.0314   3833.4466 170340.8648 315431.5613 131319.2820 234369.4968 
        913         914         915         916         917         918 
166502.7977 193033.9674 118198.6243 219180.8369 164902.1706 129139.5135 
        919         920         921         922         923         924 
239701.9487 170821.4651 158854.7244 157264.7836 173000.3667 128387.1801 
        925         926         927         928         929         930 
150449.8181 270385.1510 149278.5122 171630.7275 214330.9915 127933.9386 
        931         932         933         934         935         936 
155514.5817 264403.7263 105525.2350 124577.6028 124589.6878 124559.2804 
        937         938         939         940         941         942 
226099.9805 330492.1562 232276.9522 141785.8353 151314.1960  75781.9477 
        943         944         945         946         947         948 
 86618.9429  23299.9044 225930.2864  58691.6620 222888.6674 260388.1209 
        949         950         951         952         953         954 
235662.4669 201134.2740 122564.7595 174497.3612 212535.9607 164477.1663 
        955         956         957         958         959         960 
219004.5942 183192.0081 302391.0965 222781.8235 181497.3070 282723.0230 
        961         962         963         964         965         966 
225957.5693 200224.3273 192697.0984 258656.2168 202631.2894 175548.6956 
        967         968         969         970         971         972 
221599.4683 254331.7123 274294.7189 134639.4870 245382.9375 162074.7848 
        973         974         975         976         977         978 
164954.0431 102475.9372 115089.2138  79150.2282 191733.1027  79145.4527 
        979         980         981         982         983         984 
148589.7145 112377.7233 103648.7164 146119.4320 148990.6838 109081.6728 
        985         986         987         988         989         990 
116171.5405 151185.6484 134104.2494 214851.7104 172474.0321 192943.3114 
        991         992         993         994         995         996 
294334.0219 231130.3738 178655.9507 152468.8785 178737.1348 182545.4339 
        997         998         999        1000        1001        1002 
181314.8297 188927.3292 154811.1626 218117.5829 231060.9756 181309.0786 
       1003        1004        1005        1006        1007        1008 
173071.5182 178864.2224 181667.8869 173717.5789 212755.0191 183300.1873 
       1009        1010        1011        1012        1013        1014 
165546.5603 181363.1688 268170.9630 266197.1593 261031.9740 203548.8973 
       1015        1016        1017        1018        1019        1020 
235272.6276 207129.5827 239274.2744 232550.0553 194198.4195 170753.1412 
       1021        1022        1023        1024        1025        1026 
287253.0762 246255.0728 321719.0727 163917.5609 151928.5538 236728.8299 
       1027        1028        1029        1030        1031        1032 
141641.7552 311642.5675 208667.6254 197200.8965 219172.4861 158867.7781 
       1033        1034        1035        1036        1037        1038 
259138.4184 192434.1680 140992.0122 124057.5042 113425.6220 113929.9766 
       1039        1040        1041        1042        1043        1044 
181178.9697  99774.7213  99774.7213  99795.1879  99793.1412  99774.7213 
       1045        1046        1047        1048        1049        1050 
 99774.7213 134861.2800 142595.2527 161429.5877 140432.2177 117643.4140 
       1051        1052        1053        1054        1055        1056 
267654.0051 289203.7754 289766.2753 304774.7742 217292.3257 235835.2631 
       1057        1058        1059        1060        1061        1062 
344364.0013 270437.7232 330371.1249 320450.6073 269054.5533 220133.3639 
       1063        1064        1065        1066        1067        1068 
254079.7578 345132.9503 306786.1910 220363.3268 216103.4075 302042.8246 
       1069        1070        1071        1072        1073        1074 
323049.8545 257924.9817 234184.3707 186301.3158 208076.0679 231600.8350 
       1075        1076        1077        1078        1079        1080 
248240.4001 182111.2467 182111.2467 169974.5524 169974.5524 184605.4796 
       1081        1082        1083        1084        1085        1086 
198154.8981 215574.4104 205135.2062 170872.0333 168044.2339 164408.6682 
       1087        1088        1089        1090        1091        1092 
173831.7513 157099.9723 154229.7547 182949.6635 205461.2066 184518.0581 
       1093        1094        1095        1096        1097        1098 
196588.4699 207487.4232 161429.4399 149438.8409 245310.8648 179283.6106 
       1099        1100        1101        1102        1103        1104 
243700.4871 296968.9594 241805.8911 263033.0410 278232.3140 230489.2498 
       1105        1106        1107        1108        1109        1110 
273166.3411 293515.6902 270672.1002 239048.7758 240362.5500 275753.1430 
       1111        1112        1113        1114        1115        1116 
216929.1609 204543.8076 216067.8199 216769.9795 206534.6613 214313.5757 
       1117        1118        1119        1120        1121        1122 
195080.1296 225412.4667 202875.9559 199468.9252 186664.0376 186664.0376 
       1123        1124        1125        1126        1127        1128 
195018.2426 188690.8270 218636.7762 214291.4353 225720.1782 177302.9413 
       1129        1130        1131        1132        1133        1134 
228318.8138 164382.6451 185154.7932 144515.7633 180859.7752 178384.3346 
       1135        1136        1137        1138        1139        1140 
158735.2860 150014.2659 150014.2659 173788.4383 156492.2513 168540.0024 
       1141        1142        1143        1144        1145        1146 
182489.9961 230810.4596 177878.3534 178634.5975 184629.7698 175290.0078 
       1147        1148        1149        1150        1151        1152 
181757.0442 221873.7461 161685.5540 130851.2595 120862.9045 113478.2503 
       1153        1154        1155        1156        1157        1158 
 68909.5556 113308.6702 120258.6536 196073.0798 186504.1653 294887.4597 
       1159        1160        1161        1162        1163        1164 
331882.4986 188974.6030 130473.8213 167873.4695 124721.1492 146925.7396 
       1165        1166        1167        1168        1169        1170 
146967.0625 159170.4788 163148.7676 224580.5152 177338.5569 193015.6029 
       1171        1172        1173        1174        1175        1176 
212855.5858 234836.3827 130397.5186 146660.3467 190879.9783 178772.7265 
       1177        1178        1179        1180        1181        1182 
180513.2279 276753.5100 175187.3915 167753.2130 236834.1642 166750.9304 
       1183        1184        1185        1186        1187        1188 
332371.3153 230453.5411 197366.1847 231464.0694 194822.1387 239877.2671 
       1189        1190        1191        1192        1193        1194 
170486.1693 223024.4010 223194.8346 300563.1867 155213.6363 120463.7091 
       1195        1196        1197        1198        1199        1200 
122262.4244 238151.8563 238349.6023 227608.5651 179631.9449 285971.5888 
       1201        1202        1203        1204        1205        1206 
202278.7176 173322.0132 133305.2267 220276.2937 135041.9872 119716.7032 
       1207        1208        1209        1210        1211        1212 
126183.5340 151542.9348 194443.6727 156900.7497 152743.3680 146316.4131 
       1213        1214        1215        1216        1217        1218 
171329.2026 183533.8883 149644.4058 140873.0964 169591.3021 147881.6384 
       1219        1220        1221        1222        1223        1224 
150359.8199  44258.1914  93656.3418 144076.0778  91540.9685 204609.0000 
       1225        1226        1227        1228        1229        1230 
156044.0328 181718.8971 228362.8804 138189.5818 195579.3890 185376.1534 
       1231        1232        1233        1234        1235        1236 
153765.9370 210394.5276 195207.5539 221936.4785 147096.3751 153895.4611 
       1237        1238        1239        1240        1241        1242 
173765.8662 158468.3583 196570.4674 170730.9352 215613.1108 161361.6507 
       1243        1244        1245        1246        1247        1248 
189861.0148 144707.1744 148255.9431 116406.4039 155063.6351  77968.7465 
       1249        1250        1251        1252        1253        1254 
247387.2841 126073.8917 100336.3999 243116.7959 140734.7822 252105.2310 
       1255        1256        1257        1258        1259        1260 
 66049.2873 130723.6773 182512.5557  85574.2298 184974.7808  90650.4653 
       1261        1262        1263        1264        1265        1266 
183838.1713 139594.2908 178290.8663 169754.6595 145188.8356 288858.8980 
       1267        1268        1269        1270        1271        1272 
120177.7324 115118.0914 139879.7122 206027.8850 169901.9656 136934.4589 
       1273        1274        1275        1276        1277        1278 
171766.7587 148519.8000 130587.1434 108786.3547 147092.4583 199921.9449 
       1279        1280        1281        1282        1283        1284 
183169.4955 107775.9829 197890.3550 171520.7478 149851.1624 104027.6223 
       1285        1286        1287        1288        1289        1290 
 50456.6030 175392.6905 156757.1625  94680.7070 317479.8703  85515.7539 
       1291        1292        1293        1294        1295        1296 
154032.0087 163155.4456 245170.2633 193183.9320 143522.8530 136681.0634 
       1297        1298        1299        1300        1301        1302 
162370.9711  70040.1248 120172.7616 102476.3664 151000.7747 168638.6854 
       1303        1304        1305        1306        1307        1308 
  -735.5373 122487.2110 118600.2124 218107.4707 381912.3309 126395.3931 
       1309        1310        1311        1312        1313        1314 
160406.4582 153593.5375  89911.7063 116793.0027 268120.6425 180730.6439 
       1315        1316        1317        1318        1319        1320 
170522.7897 145535.9508 174061.0921 157237.0616 176208.3388 115880.0445 
       1321        1322        1323        1324        1325        1326 
312520.9606  75235.2172 276346.1004 130914.6084 154050.5799 116518.0928 
       1327        1328        1329        1330        1331        1332 
146486.3003 153547.5148 200266.9094 101338.8627 202912.9580 101769.2216 
       1333        1334        1335        1336        1337        1338 
139898.3359 140749.7453 189403.7302 125510.4322 142893.6465 163355.0742 
       1339        1340        1341        1342        1343        1344 
153501.5295 134626.5987 124137.4352 117874.5503 121180.9567  56877.5155 
       1345        1346        1347        1348        1349        1350 
188185.2359 231467.9408 221427.4209 198357.9442 147661.1830  15436.0788 
       1351        1352        1353        1354        1355        1356 
161128.3334 207060.3671 209242.9407 202885.6842 174280.8848 109946.4101 
       1357        1358        1359        1360        1361        1362 
229393.3602 177762.9073 172476.6469  99481.5060 163521.5294 172095.8273 
       1363        1364        1365        1366        1367        1368 
151471.0927 138728.0089 139561.1434 168827.2225 107876.8539 154597.8403 
       1369        1370        1371        1372        1373        1374 
 98578.5054 101711.0715 157240.7814  92620.6363 163447.9995 139700.1363 
       1375        1376        1377        1378        1379        1380 
190000.1589 150947.7476 144159.9612 139117.8482 147356.5633 119145.3495 
       1381        1382        1383        1384        1385        1386 
132116.5035 117959.3108 137913.2537 143749.8207 151128.3112 170667.4445 
       1387        1388        1389        1390        1391        1392 
153679.8210 134008.6976 165924.0222 127409.6966 160714.3020 188700.2330 
       1393        1394        1395        1396        1397        1398 
169862.1430 184709.3744  86042.0370 237091.4876 153785.2257 119441.4324 
       1399        1400        1401        1402        1403        1404 
174442.3554 227476.0416 209679.8578 188337.3873 232902.6857 184784.4985 
       1405        1406        1407        1408        1409        1410 
115926.8327 146818.9454 268016.5114 208745.9093 200208.6105 239853.2035 
       1411        1412        1413        1414        1415        1416 
206477.6915  65254.2337 132324.9608 161122.0706 150714.9721 108592.2206 
       1417        1418        1419        1420        1421        1422 
 66671.0811  70551.6105 276066.0474 289246.8416 223357.1199 239275.3759 
       1423        1424        1425        1426        1427        1428 
237689.4520 140085.5921 221715.7342 317112.3384 243691.2536 229169.0871 
       1429        1430        1431        1432        1433        1434 
206949.1342 225956.7217 167081.7641 131778.3859 147448.4147 131729.1687 
       1435        1436        1437        1438        1439        1440 
193291.7893 189631.3797 173867.2948 191430.7047 185813.5416 202140.3843 
       1441        1442        1443        1444        1445        1446 
204633.2380 196861.4294 197269.1919 193622.1320 124238.7116 130925.5386 
       1447        1448        1449        1450        1451        1452 
158511.2111 137079.9516 144107.1527 213995.6855 122105.3044 113388.5873 
       1453        1454        1455        1456        1457        1458 
101297.6519 247667.7498 226459.8290 204476.6012 247219.9734 204010.3060 
       1459        1460        1461        1462        1463        1464 
228175.0713 241206.5384 234059.3872 246870.8830 249381.9182 189629.9797 
       1465        1466        1467        1468        1469        1470 
251193.2542 173677.3341 189764.8475 204284.0311 110817.6535 110816.7764 
       1471        1472        1473        1474        1475        1476 
204520.6572 253895.5796 210322.1977 183141.0460 197281.5105 195859.1466 
       1477        1478        1479        1480        1481        1482 
167266.5631 167031.9365 214540.5744 185176.6384 154246.3228 110816.7764 
       1483        1484        1485        1486        1487        1488 
110816.7764 110817.9459 110817.9459 103754.7527 249194.6817 146469.9123 
       1489        1490        1491        1492        1493        1494 
170090.7453 138198.0165 151184.5603 133047.3038 159300.8364 172653.5677 
       1495        1496        1497        1498        1499        1500 
150050.7601 146654.2581 151955.4438 542824.4855 748742.2314 142991.2762 
       1501        1502        1503        1504        1505        1506 
106392.9602 106390.2313 148445.6648 106471.4153  53501.4455 112498.5498 
       1507        1508        1509        1510        1511        1512 
140070.2180 123118.1954 135819.7951 171835.0554 158626.3120 162385.8766 
       1513        1514        1515        1516        1517        1518 
153855.0003  64889.1492  65146.8330 139909.7608 113449.6543 200246.8474 
       1519        1520        1521        1522        1523        1524 
214427.8086 194018.5382 166116.0506 265308.6695 206835.6174 139297.4385 
       1525        1526        1527        1528        1529        1530 
256282.4154 180371.8038 135874.7007  54302.9462 163105.8911 157187.0039 
       1531        1532        1533        1534        1535        1536 
172129.6989 165474.5603 178914.2347 227337.1571 160014.1909  97782.8493 
       1537        1538        1539        1540        1541        1542 
204526.9533 395579.0866 221230.7117 243016.2169 264087.5460 225844.3062 
       1543        1544        1545        1546        1547        1548 
105539.4641 161192.4153 121289.0047 125652.1773  54907.8703 106352.6444 
       1549        1550        1551        1552        1553        1554 
100980.4882 136200.7529 192842.0217 120319.4685 221519.6569  46905.1970 
       1555        1556        1557        1558        1559        1560 
103667.2435  89583.8859  68389.0848 118761.9899  87178.5855 226676.1080 
       1561        1562        1563        1564        1565        1566 
225930.2864 225639.2419 225642.2631 283150.2278 232751.0322 195809.7756 
       1567        1568        1569        1570        1571        1572 
150218.3083 173420.2147 201630.7245 232431.8513 251269.6873 204791.2262 
       1573        1574        1575        1576        1577        1578 
407019.8198 210702.7930 226195.6400 193280.9765 152264.9064 150845.5274 
       1579        1580        1581        1582        1583        1584 
171701.5293 204785.6799 227197.6981 170902.3906 206538.9938 196703.2076 
       1585        1586        1587        1588        1589        1590 
230214.1414 267498.3958 238188.5987 272163.6508 182662.3140 182479.0896 
       1591        1592        1593        1594        1595        1596 
146416.6018 159915.3412 162438.1535 138437.9685 134267.8935 167314.8528 
       1597        1598        1599        1600        1601        1602 
102512.7770 102475.9372 157054.0776 112305.6031  79185.7036 132659.9779 
       1603        1604        1605        1606        1607        1608 
106411.1203 121860.0808 106421.8409 106421.8409 110596.7653 194609.1792 
       1609        1610        1611        1612        1613        1614 
117495.9130 223837.7314 216234.8214 217813.6146 173181.3111 309664.8463 
       1615        1616        1617        1618        1619        1620 
309016.8449 184881.9538 168835.9090 159990.6593 177720.5274 149932.6094 
       1621        1622        1623        1624        1625        1626 
226651.0608 186133.9079 189049.2474 159994.1743 169457.8944 238034.6492 
       1627        1628        1629        1630        1631        1632 
160120.1722 160344.4129 161622.3562 180726.0786 152464.9047 145296.7294 
       1633        1634        1635        1636        1637        1638 
234706.9912 158499.1024 178978.6756 266381.3247 271206.3434 329955.5337 
       1639        1640        1641        1642        1643        1644 
197362.3846 221156.1731 193376.5941 311290.4435 283628.9031 196834.1936 
       1645        1646        1647        1648        1649        1650 
174221.4082 213938.2585 156348.5567 229057.8132 215644.1849 223578.5114 
       1651        1652        1653        1654        1655        1656 
226016.8932 137887.6897 158904.1159 195928.7689 184100.2716 171267.8788 
       1657        1658        1659        1660        1661        1662 
165206.6973 203139.0314 197493.0145 219642.1035 179788.0263 210864.9908 
       1663        1664        1665        1666        1667        1668 
116426.4171 130558.7383 155898.4872 193941.8078 120658.8531 126020.6491 
       1669        1670        1671        1672        1673        1674 
114648.8608 112540.4034 121563.1828 113565.9642  99119.9153 181184.1351 
       1675        1676        1677        1678        1679        1680 
181849.7857 111093.8340 130485.1808 130501.5541 134894.0265 148352.2302 
       1681        1682        1683        1684        1685        1686 
126701.6215 165939.4646 140410.2893 131237.0645 250956.7439 252608.7675 
       1687        1688        1689        1690        1691        1692 
233350.4838 233330.5046 239114.3606 295191.0599 295058.4998 328448.4212 
       1693        1694        1695        1696        1697        1698 
271083.3375 284356.8895 235120.5937 357052.0345 273730.1579 335072.3547 
       1699        1700        1701        1702        1703        1704 
224654.0383 274235.2389 323404.4531 319653.2250 264919.9586 264020.9670 
       1705        1706        1707        1708        1709        1710 
221817.6975 266781.9683 249052.9521 339513.5527 263423.4178 261704.1945 
       1711        1712        1713        1714        1715        1716 
261608.8820 194875.7292 221628.3955 236966.9340 220141.6068 185120.8087 
       1717        1718        1719        1720        1721        1722 
176124.7717 176124.9666 184995.2805 212470.5752 212470.5752 186161.8951 
       1723        1724        1725        1726        1727        1728 
216098.5640 213743.6987 258133.6875 179519.9143 190888.7256 160746.6060 
       1729        1730        1731        1732        1733        1734 
163518.7030 160125.1186 147570.0438 158153.6300 176598.4742 180390.2600 
       1735        1736        1737        1738        1739        1740 
154326.1424 176621.0371 182082.4665 143787.6238 159693.5009 154198.9573 
       1741        1742        1743        1744        1745        1746 
170160.3611 169792.4503 190523.1095 217414.8385 170923.4921 209988.3092 
       1747        1748        1749        1750        1751        1752 
150980.0690 148708.5614 203554.7825 208914.1308 182972.4691 151061.4009 
       1753        1754        1755        1756        1757        1758 
202260.9514 187065.2430 207279.0541 183792.5397 155073.4925 138777.1763 
       1759        1760        1761        1762        1763        1764 
186715.3706 184201.3522 508071.3632 309587.1670 239658.7001 368470.2579 
       1765        1766        1767        1768        1769        1770 
346509.3686 289562.4614 254706.4255 497402.2856 224950.4534 272678.5673 
       1771        1772        1773        1774        1775        1776 
272288.1773 280388.0444 454254.1083 239450.6848 281082.6463 186355.9228 
       1777        1778        1779        1780        1781        1782 
211448.6294 263691.5726 200553.4196 210178.2200 272533.8327 225143.9984 
       1783        1784        1785        1786        1787        1788 
247691.5300 209251.3860 237702.5370 232418.1094 217892.5718 210582.0551 
       1789        1790        1791        1792        1793        1794 
204565.9228 205917.1559 233160.8270 213079.1622 220361.2599 181769.2986 
       1795        1796        1797        1798        1799        1800 
181372.4954 192399.0825 165218.9524 218003.0216 277822.4251 203645.0575 
       1801        1802        1803        1804        1805        1806 
227788.8657 188638.6888 217359.6025 232034.7409 262551.5383 290284.8456 
       1807        1808        1809        1810        1811        1812 
147395.0215 153585.4267 147013.6701 202958.9552 188940.4582 196475.4644 
       1813        1814        1815        1816        1817        1818 
183334.3733 204963.9192 215827.3038 132494.6790 116462.7652 279928.6138 
       1819        1820        1821        1822        1823        1824 
117620.2481 128775.3537 141196.8195 132879.9121 150222.6260 233798.5361 
       1825        1826        1827        1828        1829        1830 
138754.9078 131509.4647 118761.0359 275293.7535 262217.8258 138642.2000 
       1831        1832        1833        1834        1835        1836 
234808.1962 141424.6511 310885.4052 357423.1798 187112.5388 154349.5323 
       1837        1838        1839        1840        1841        1842 
213975.6146 183354.9816 183294.1666 211966.8438 167379.3866 130496.6269 
       1843        1844        1845        1846        1847        1848 
159170.4788 153988.8889 160005.2022 165855.0088 161876.7200 113793.4069 
       1849        1850        1851        1852        1853        1854 
154660.7640 210198.8051 184520.0073 224305.6365 259409.6724 204308.0146 
       1855        1856        1857        1858        1859        1860 
329514.7848 196034.4177 196229.0213 175111.0863 209808.3631 170921.6788 
       1861        1862        1863        1864        1865        1866 
349512.9007 290426.6083 213433.0057 155290.4241 274608.5781 144922.8825 
       1867        1868        1869        1870        1871        1872 
175877.1205 221192.1063 218712.2000 227949.5787 231283.3494 146702.8560 
       1873        1874        1875        1876        1877        1878 
168042.4205 140806.4192 148456.3648 164085.0412 143779.8383 182717.1839 
       1879        1880        1881        1882        1883        1884 
238108.1943 117231.8471 194222.9794 127466.0963 142491.9837 153156.2373 
       1885        1886        1887        1888        1889        1890 
120333.4053 143647.1128 116092.8756 160588.0768 127888.4782 117853.6644 
       1891        1892        1893        1894        1895        1896 
161918.0104 139210.8543 176655.8303 219302.4273 187219.1982 228275.9109 
       1897        1898        1899        1900        1901        1902 
195449.3222 180063.6869 165474.6734 123285.2711 120209.4748 -11470.0595 
       1903        1904        1905        1906        1907        1908 
 36325.6271  22828.6169 105131.2573 221925.8037 154797.8327 205226.1020 
       1909        1910        1911        1912        1913        1914 
162401.5119 179725.9031 213731.7938 173556.8681 169769.9755 120588.2627 
       1915        1916        1917        1918        1919        1920 
169106.6997 276844.7992 123907.9034 134088.0594 140701.8595 141126.5363 
       1921        1922        1923        1924        1925        1926 
196849.6218 141231.2081 168563.0804 153885.3253 237013.9096 121990.8571 
       1927        1928        1929        1930        1931        1932 
140167.4136 228036.0386 192625.3532 164343.2418 155564.3158 213674.2925 
       1933        1934        1935        1936        1937        1938 
125848.8954 138800.3241 134289.1190 122302.8702 184789.7082 180163.6441 
       1939        1940        1941        1942        1943        1944 
122289.2259 123198.6677 226340.7724 122864.8088 178738.0095 117799.3645 
       1945        1946        1947        1948        1949        1950 
164542.9369 326044.8479 119886.6919 115816.1872 147091.9304 128713.5346 
       1951        1952        1953        1954        1955        1956 
162369.4187  88309.5252 189344.5593 116991.8361 126166.4785 225353.6739 
       1957        1958        1959        1960        1961        1962 
106719.8789 145209.5118 213669.8182 131241.9375 167232.6653 113390.5365 
       1963        1964        1965        1966        1967        1968 
152241.0306 138757.2468 157454.3952 167877.0312 187321.4779 199871.9480 
       1969        1970        1971        1972        1973        1974 
122152.7821 204972.3724 192732.7321 113332.0606 123712.9838 127189.3399 
       1975        1976        1977        1978        1979        1980 
154836.9954 149200.3476  87525.7444 123755.8661 127824.2965 140086.6046 
       1981        1982        1983        1984        1985        1986 
143334.8221 128020.0106 128412.4784 151704.3726  81587.0402 127094.0242 
       1987        1988        1989        1990        1991        1992 
208875.0236 113354.8957 128491.3262 143355.0747 181185.5975 162672.2963 
       1993        1994        1995        1996        1997        1998 
128486.2187 221835.8725 186409.1729 244391.2411 143171.4078 273150.0383 
       1999        2000        2001        2002        2003        2004 
207504.3359 192949.9732 213532.4737 297300.6187 148366.9903 128501.6570 
       2005        2006        2007        2008        2009        2010 
188411.6397  84431.9118 163669.0198 157160.5096 180556.7725 138959.8462 
       2011        2012        2013        2014        2015        2016 
128136.8336 142918.8740 116164.5381 158283.8833 153394.3469 169038.3905 
       2017        2018        2019        2020        2021        2022 
150228.8576 171656.2016 111845.6508 160788.9063  82508.7613 243893.3768 
       2023        2024        2025        2026        2027        2028 
205543.8224 149145.2533 156848.1886 147492.7562  92953.6694 251787.1073 
       2029        2030        2031        2032        2033        2034 
 94721.4410 100318.5109 214625.0547 148541.7544 271159.9883 148495.6709 
       2035        2036        2037        2038        2039        2040 
150787.2843 210657.7009 239502.4679 148902.0359  68230.1299 160952.3195 
       2041        2042        2043        2044        2045        2046 
112453.6051 156390.5091 109661.3696 155754.5692 254537.5481 306062.8608 
       2047        2048        2049        2050        2051        2052 
 80919.2863  94171.2161 133218.7799 198433.9787 134381.1742 137216.8295 
       2053        2054        2055        2056        2057        2058 
136525.9989 139164.3365 120561.6709 117699.0931 125656.7046 114085.7764 
       2059        2060        2061        2062        2063        2064 
118284.0912 124880.3634 126543.9846 117857.9526 174096.0896 120395.1948 
       2065        2066        2067        2068        2069        2070 
187635.3664 305621.6956 194625.8872 145637.6262 176421.2977 158947.2758 
       2071        2072        2073        2074        2075        2076 
 84511.1529 262115.6213 208495.7890 231116.5144 180765.2706 225175.9741 
       2077        2078        2079        2080        2081        2082 
120496.5294 338217.9551 300206.2887 184442.8129 113215.1088  76838.3042 
       2083        2084        2085        2086        2087        2088 
196362.9754  76289.1212 138115.4444 182407.5245 129673.1838 113805.5434 
       2089        2090        2091        2092        2093        2094 
182098.1576 209140.8150 196908.7799 244054.0499 310441.8609 221578.6405 
       2095        2096        2097        2098        2099        2100 
225446.3004 214347.2035 291030.2670 313209.6298 226882.1233 297406.9771 
       2101        2102        2103        2104        2105        2106 
204423.6019 178849.1752 226985.1383 293098.4196 172572.6303 154529.3461 
       2107        2108        2109        2110        2111        2112 
167652.7467 162871.0906 212016.6842 205102.9854 171843.5718 191675.2161 
       2113        2114        2115        2116        2117        2118 
178380.1690 232682.0751 202190.2223 269700.1369 221254.6586 222082.9781 
       2119        2120        2121        2122        2123        2124 
241187.6587 136820.5520 131683.3625 162156.6895 137148.7888 191962.2967 
       2125        2126        2127        2128        2129        2130 
131649.5440 147846.2162 131614.6534 192519.4629 204944.4415 186901.9722 
       2131        2132        2133        2134        2135        2136 
180918.0484 201997.5495 202265.4252 178962.1502 118157.7390 136710.8566 
       2137        2138        2139        2140        2141        2142 
134510.7574 138901.6823 120467.8260 115791.1932 116030.5988 128814.2254 
       2143        2144        2145        2146        2147        2148 
113390.5365 114974.1285 277242.9108 247416.6339 230261.3799 199199.4340 
       2149        2150        2151        2152        2153        2154 
209876.9098 184931.6546 267019.5985 218656.2285 285208.5191 228925.7596 
       2155        2156        2157        2158        2159        2160 
229531.2346 237020.7047 110817.6535 183038.0748 200635.0055 181606.8183 
       2161        2162        2163        2164        2165        2166 
156509.4993 195498.9722 193848.5388 160475.3600 180587.7726 157771.0370 
       2167        2168        2169        2170        2171        2172 
163402.5309 163969.5513 124011.6981 145746.2141 127573.6240 156899.2389 
       2173        2174        2175        2176        2177        2178 
158840.2118 106932.6278 139214.6848 149307.1801 241499.4930 151095.0627 
       2179        2180        2181        2182        2183        2184 
145909.0015 150519.9127 725625.1000 571439.0434 142991.2762 127133.0081 
       2185        2186        2187        2188        2189        2190 
106475.0214 125777.2624 112846.6043 100148.3172 106176.2433 117928.7084 
       2191        2192        2193        2194        2195        2196 
101284.8751  99664.8279 113485.2674 125579.9063 316022.0485 235010.0968 
       2197        2198        2199        2200        2201        2202 
168798.1569  54578.2554 193724.0826 142910.3614 195461.5570 114331.5001 
       2203        2204        2205        2206        2207        2208 
111611.7911 162944.6759 151993.5403 181494.8965  40286.4175 132803.8530 
       2209        2210        2211        2212        2213        2214 
126259.9720 162734.7075 167640.8737 184357.0940 166080.9030 243306.0612 
       2215        2216        2217        2218        2219        2220 
372711.6040 209652.9461 221365.5903 147637.1853 309967.4076 269009.8904 
       2221        2222        2223        2224        2225        2226 
254460.1791 192435.6182 315563.7433 215370.7756 204624.7679 107401.5283 
       2227        2228        2229        2230        2231        2232 
231904.2659 135527.8155 234482.7041 353555.4098 382506.3317 127416.5886 
       2233        2234        2235        2236        2237        2238 
133666.4884  56048.5459 178880.3185 129126.0812 198233.4993 106136.4785 
       2239        2240        2241        2242        2243        2244 
134800.6472 144226.8481 174354.1924  81519.7215 168937.8555 143416.8980 
       2245        2246        2247        2248        2249        2250 
133002.3512 222787.2576 222707.5355 176496.8290 120333.8926 144680.1780 
       2251        2252        2253        2254        2255        2256 
189675.8412 192402.3356 202049.6345 121315.5964 136830.4545 204788.3024 
       2257        2258        2259        2260        2261        2262 
205488.6635 181135.1749 318341.4484 232273.7714 214271.5853 202826.5752 
       2263        2264        2265        2266        2267        2268 
215541.7850 226306.3543 167825.7379 204456.6370 188991.3266 177838.9451 
       2269        2270        2271        2272        2273        2274 
154221.0065 266103.3693 203711.5162 224237.1289 265496.9546 218038.6228 
       2275        2276        2277        2278        2279        2280 
245474.7209 252124.4306 264455.6686 150362.1885 285364.9342 123708.1108 
       2281        2282        2283        2284        2285        2286 
140490.6672 225688.8372 224976.5507 141317.2267 153122.1854 112308.2345 
       2287        2288        2289        2290        2291        2292 
103045.6489 112307.3574 112356.6720  79190.1867 112345.8540 142297.9944 
       2293        2294        2295        2296        2297        2298 
134309.1957 185073.7445 232898.6868 151532.6747 103554.5702  99574.3852 
       2299        2300        2301        2302        2303        2304 
174150.7351 110694.1276 158965.2380 106588.8870 106911.5764 129568.7356 
       2305        2306        2307        2308        2309        2310 
117018.1355 175523.6042 136749.4359 248152.8369 192251.6747 255923.1306 
       2311        2312        2313        2314        2315        2316 
165160.8750 235548.7071 175774.9822 155938.2212 186603.2406 163617.9981 
       2317        2318        2319        2320        2321        2322 
279272.5069 230171.0878 226252.6959 193628.0903 276817.0700 212253.6683 
       2323        2324        2325        2326        2327        2328 
339272.9244 157384.5993 156032.3355 182785.2238 161996.9144 200263.8844 
       2329        2330        2331        2332        2333        2334 
239727.8908 308137.3524 364364.9707 261779.8482 349247.5750 280226.0890 
       2335        2336        2337        2338        2339        2340 
326483.7833 306412.9004 320825.6911 272128.5279  95360.8461 235851.3056 
       2341        2342        2343        2344        2345        2346 
252282.6374 278010.4068 223047.3188 254692.4500 267156.4154 168846.5318 
       2347        2348        2349        2350        2351        2352 
147971.8182 258817.0226 200963.5604 232024.3275 305698.4171 167591.9760 
       2353        2354        2355        2356        2357        2358 
145184.1870 239988.7233 212472.8495 143909.2797 178027.2608 177740.5639 
       2359        2360        2361        2362        2363        2364 
148070.5598 147634.9086 113600.3675 112616.9094 114830.1656 193443.2566 
       2365        2366        2367        2368        2369        2370 
111147.9242 148375.6206  99801.3278 104030.9724 130464.7143 130464.7143 
       2371        2372        2373        2374        2375        2376 
 96542.3617 111042.6676  99774.7213 142595.2527 188713.7415 118635.3807 
       2377        2378        2379        2380        2381        2382 
140407.9503 161417.0154 274982.6199 310641.2293 281339.8749 222812.1040 
       2383        2384        2385        2386        2387        2388 
288525.6887 239992.0748 258668.0449 256198.8297 257348.3910 261981.5435 
       2389        2390        2391        2392        2393        2394 
240730.8702 226590.2383 261836.1005 254281.2632 250137.8268 251728.0270 
       2395        2396        2397        2398        2399        2400 
279183.4775 269375.1277 221070.5879 247627.2597 246003.9868 247440.9165 
       2401        2402        2403        2404        2405        2406 
329274.8265 211799.9139 235329.8495 185357.5681 214182.9116 185923.9662 
       2407        2408        2409        2410        2411        2412 
185908.0802 231780.6779 228768.1921 190878.3948 178757.7579 154444.9459 
       2413        2414        2415        2416        2417        2418 
158039.4815 154520.2019 197772.8899 180336.0723 154965.4788 250373.2309 
       2419        2420        2421        2422        2423        2424 
157926.0382 184971.1399 212766.6050 198226.3509 206119.1664 192167.8236 
       2425        2426        2427        2428        2429        2430 
211458.8537 168263.9378 153003.8692 205406.6613 214282.8375 204643.4624 
       2431        2432        2433        2434        2435        2436 
187611.5832 163431.5450 149566.1234 173439.9855 238666.5586 163432.9094 
       2437        2438        2439        2440        2441        2442 
185221.3987 207281.4676 204105.6733 186434.2200 248024.8544 240424.1872 
       2443        2444        2445        2446        2447        2448 
273419.6780 218926.5853 247994.9984 404240.4296 319896.1369 215273.4737 
       2449        2450        2451        2452        2453        2454 
248203.3073 298164.1843 398140.1329 275719.5969 272130.1308 317108.5327 
       2455        2456        2457        2458        2459        2460 
220463.6637 230206.0759 292231.6159 228275.6391 221795.6660 205890.9096 
       2461        2462        2463        2464        2465        2466 
173131.5239 332756.2579 203758.7547 216941.3851 163988.8624 183728.8214 
       2467        2468        2469        2470        2471        2472 
167238.9275 170687.7752 171292.8648 176302.3288 153464.1719 190927.3433 
       2473        2474        2475        2476        2477        2478 
152400.9179 153840.5470 156287.9165 183226.4190 171174.1494 198844.6670 
       2479        2480        2481        2482        2483        2484 
171336.6046 184238.2276 190264.2947 164207.0077 137434.8873 141197.0972 
       2485        2486        2487        2488        2489        2490 
127989.2664 131427.1112 237959.6656 204811.4122 163544.4848 163613.5011 
       2491        2492        2493        2494        2495        2496 
130871.5312 119990.6923 122312.4213 136994.9372 124228.4340  72034.8319 
       2497        2498        2499        2500        2501        2502 
166924.5653 124630.5443 340391.7950 269660.9396 316445.5975 281164.9169 
       2503        2504        2505        2506        2507        2508 
251038.9912 223315.0852 153208.0623 168149.7976 113204.1163 115048.3953 
       2509        2510        2511        2512        2513        2514 
115048.3953 113204.1163 161818.6192 152563.5097 144212.9163 110623.1762 
       2515        2516        2517        2518        2519        2520 
181679.5314 214738.4769 204316.1038 163308.4903 166465.5148 137805.2003 
       2521        2522        2523        2524        2525        2526 
165180.9590 165181.1540 258383.9556 161330.3219 223071.8080 300714.2198 
       2527        2528        2529        2530        2531        2532 
150050.6511 301701.7974 199490.3495 181339.6367 156813.3135 130338.7567 
       2533        2534        2535        2536        2537        2538 
140545.5045 189842.7174 129724.8958 140572.5156 118402.2273 140561.0006 
       2539        2540        2541        2542        2543        2544 
153502.1665 161959.9181 221936.2725 140504.7515 113575.7101 235587.3549 
       2545        2546        2547        2548        2549        2550 
214464.4731 169260.1189 203532.1459 152543.7477 146956.0862 140772.3230 
       2551        2552        2553        2554        2555        2556 
169023.1498 106611.8875 134532.9635 139405.8862 137985.1379 113983.6533 
       2557        2558        2559        2560        2561        2562 
 96412.8686 149969.4627 195539.3366 223158.8571 164299.3849 248504.6785 
       2563        2564        2565        2566        2567        2568 
178532.4633 194993.2919 124017.8381 217211.1712 168920.3976 166927.4744 
       2569        2570        2571        2572        2573        2574 
242738.7364 151572.1728 299289.9432 134367.0868 160373.9044 153794.0055 
       2575        2576        2577        2578        2579        2580 
185488.9440 188536.1107 181575.9088 186508.6571 146959.6479 151108.5948 
       2581        2582        2583        2584        2585        2586 
167218.6991 124747.2332 140254.5722 187356.1440 134664.8266 216037.6221 
       2587        2588        2589        2590        2591        2592 
153892.8445 134064.5273 141655.1583 117071.6941 283921.0433 188845.7553 
       2593        2594        2595        2596        2597        2598 
294294.1220 152749.4180 150397.0597  91964.9829 108752.2586 143303.3573 
       2599        2600        2601        2602        2603        2604 
 43956.1871  76026.8895 152035.5263 168479.1889 195151.1185 132327.8161 
       2605        2606        2607        2608        2609        2610 
248956.9951 177806.7633 179755.5721 145954.5537 154278.8976 199248.1506 
       2611        2612        2613        2614        2615        2616 
162994.9473 120359.2321 161064.9535 113403.4012 106470.5708 244603.6783 
       2617        2618        2619        2620        2621        2622 
201353.6828 309034.2771 220236.1703 171134.9728  83784.7309 138728.0089 
       2623        2624        2625        2626        2627        2628 
138728.0089 138763.0944  90513.1535  90513.1535  90513.1535 213140.7384 
       2629        2630        2631        2632        2633        2634 
154636.5367 154544.4372 141082.2512 133118.3963 139467.3154 113371.0445 
       2635        2636        2637        2638        2639        2640 
136549.0733 217697.2696 100466.7906 202372.4232 147891.7849 164016.9851 
       2641        2642        2643        2644        2645        2646 
176068.3691 159085.1220  54220.6216 105900.6789 168627.4924  89283.1900 
       2647        2648        2649        2650        2651        2652 
110358.5587 200741.9710 113390.5365 126228.7808 146703.6810 127094.0242 
       2653        2654        2655        2656        2657        2658 
168524.1272  59897.7332 141260.9840 156300.9524 109793.8175 156106.9669 
       2659        2660        2661        2662        2663        2664 
154810.2413 141297.2996 238186.9289 114096.7963 179018.0519  95471.1309 
       2665        2666        2667        2668        2669        2670 
196002.6631 162165.5584 334890.6555  82092.0598 127459.4985  87265.2048 
       2671        2672        2673        2674        2675        2676 
102473.3303 179006.9891 154646.8190 188032.4033 130163.9760 106386.7553 
       2677        2678        2679        2680        2681        2682 
155034.4836 129676.6850  86677.8381  57201.6986 183180.8360 143897.4743 
       2683        2684        2685        2686        2687        2688 
147680.7205  77570.7827 139799.7951 106916.1571 295977.8791  79125.6447 
       2689        2690        2691        2692        2693        2694 
185475.8207  40126.6661 158772.8095 139888.7852  58741.7918 150831.1814 
       2695        2696        2697        2698        2699        2700 
150773.5250  95960.8263  15480.5205 130666.0859 173397.2694 265942.9356 
       2701        2702        2703        2704        2705        2706 
226486.7613 183618.1231  89332.7970 115357.0097 143313.1033 188356.5749 
       2707        2708        2709        2710        2711        2712 
175932.4924 142877.2866 142585.3354 179483.6977 123776.4981 141638.7319 
       2713        2714        2715        2716        2717        2718 
156283.8379 146149.8015 199132.0745 237072.2881 138725.6699 272421.5738 
       2719        2720        2721        2722        2723        2724 
269691.1662 225241.2809 249149.1597 246161.3696  67203.0609 127507.8386 
       2725        2726        2727        2728        2729        2730 
196561.0669 253740.7928 133539.6324 259024.2368 105969.3438 118308.8017 
       2731        2732        2733        2734        2735        2736 
171517.0052 197996.6913 183568.4865  84708.9512 223413.2051 268848.9558 
       2737        2738        2739        2740        2741        2742 
238423.6492 406720.0261 214025.2453 203695.8784 141498.8475 217253.0448 
       2743        2744        2745        2746        2747        2748 
187824.1943 154199.9847 150931.5103 170922.9217 176260.2793 281779.9121 
       2749        2750        2751        2752        2753        2754 
212673.8419 196495.3258 224757.1261 162941.8464 164661.4097 175251.9010 
       2755        2756        2757        2758        2759        2760 
221753.5339 204837.4754 236736.0884 255364.1247 239071.4783 218340.8190 
       2761        2762        2763        2764        2765        2766 
197029.5184 221568.9450 169379.1138 204623.5274 219611.4795 132631.0323 
       2767        2768        2769        2770        2771        2772 
215896.3677 189294.9092 120749.1009 147932.5124 162315.8257 194298.4576 
       2773        2774        2775        2776        2777        2778 
132150.4874 208735.1946 204285.5988 217918.3012 186453.5176 195147.5762 
       2779        2780        2781        2782        2783        2784 
200052.6198 194039.2314 211487.3061 126696.1047 146058.7160 173877.4430 
       2785        2786        2787        2788        2789        2790 
129059.6587 113620.5417 117962.8194 113390.5365 136541.4307 220903.3851 
       2791        2792        2793        2794        2795        2796 
188938.9010 185992.5955 184887.1385 247007.1466 200638.5774 227211.3868 
       2797        2798        2799        2800        2801        2802 
239412.4666 225278.8934 215465.2117 212776.7212 230735.3346 253507.6600 
       2803        2804        2805        2806        2807        2808 
110817.6535 110817.6535 214782.3507 189271.9382 202701.2749 233932.1151 
       2809        2810        2811        2812        2813        2814 
185086.1912 170533.0559 212718.0936 184525.5678 181494.2375 159299.9457 
       2815        2816        2817        2818        2819        2820 
154271.8573 177750.7145 154599.6549 201084.8975 164804.7731 134759.4217 
       2821        2822        2823        2824        2825        2826 
130304.6458 159177.5734 181121.7572 120671.5229 252268.7736 142991.2762 
       2827        2828        2829        2830        2831        2832 
142991.2762 142991.2762 189443.7592 189443.7592 189443.7592 189443.7592 
       2833        2834        2835        2836        2837        2838 
189809.3332 104674.5347 151637.2841 145898.5392 127447.5177 148418.3734 
       2839        2840        2841        2842        2843        2844 
113485.2674 203218.4316 134612.1694  79543.1241 143794.6952  12440.8139 
       2845        2846        2847        2848        2849        2850 
111017.8345 206695.3168 194128.3728 182539.3091 101489.0839 156951.9603 
       2851        2852        2853        2854        2855        2856 
191929.4963 160049.4915 134004.2439 174779.2281 193430.7744 171309.3808 
       2857        2858        2859        2860        2861        2862 
 97644.6333 190242.0178 176310.1019 163526.6861 200537.2091 159311.6397 
       2863        2864        2865        2866        2867        2868 
222215.4419 196129.1816 255740.6055 181438.6680 206392.8970 250397.3482 
       2869        2870        2871        2872        2873        2874 
226677.2037 259757.4582 182174.3121 255368.9682  81177.1176 148080.7067 
       2875        2876        2877        2878        2879        2880 
 37533.8275  81270.2391  77721.9930 184013.1536 154900.3245  46113.1795 
       2881        2882        2883        2884        2885        2886 
  9938.3648 121284.8749  53549.1895 244831.1258 225642.2631 224542.7039 
       2887        2888        2889        2890        2891        2892 
228676.3555 203842.0149 133869.8853 163579.8479 271407.0939 275252.8397 
       2893        2894        2895        2896        2897        2898 
175539.8120 230726.6059 235674.1178 153336.7182 181855.6628 277040.6714 
       2899        2900        2901        2902        2903        2904 
191074.0646 248834.8075 271799.3845 281376.8873 254036.9938 221691.1479 
       2905        2906        2907        2908        2909        2910 
185930.3010 163802.3398 181221.8521 154100.5550 134267.8935 167314.8528 
       2911        2912        2913        2914        2915        2916 
276490.9698 115119.8162 227285.1344  79144.7705 112306.2853 185398.8320 
       2917        2918        2919        2920        2921        2922 
 79150.9104 112311.0608 112310.3786 112350.3371 112346.2438 238304.6733 
       2923        2924        2925        2926        2927        2928 
237978.8651 152102.9094 166464.6703 133473.2091 119025.3469 128966.4724 
       2929        2930 
189244.9270 215842.7162 

When applied to a fitted linear model, the predict function will automatically provide predicted values (\(\hat{y}\)) for the data originally used to fit the model. These training or in-sample predictions are somewhat useful and, if we had a second data set, we could use the newdata argument to get similar ‘test set’ or ‘out-of-sample’ predictions which would provide us a more nuanced view of model accuracy.

If we want to work with this model in more detail, the broom package provides useful functionality for tidyverse-type manipulation:

library(broom)

glance(ames_lm)
# A tibble: 1 × 12
  r.squared adj.r.squared  sigma statistic p.value    df  logLik    AIC    BIC
      <dbl>         <dbl>  <dbl>     <dbl>   <dbl> <dbl>   <dbl>  <dbl>  <dbl>
1     0.601         0.601 50475.     1103.       0     4 -35885. 71781. 71817.
# ℹ 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

Here, we see that the glance function provides the usual ‘model-level’ statistics that can be used to assess how effective the model is. Perhaps the most important ones here are the r.squared value, indicating we capture about 60% of variability with this model, and the sigma value indicating that our predictions are typically off by about $50,000.

The tidy function gives us information about specific coefficients:

tidy(ames_lm)
# A tibble: 5 × 5
  term             estimate std.error statistic   p.value
  <chr>               <dbl>     <dbl>     <dbl>     <dbl>
1 (Intercept)   -60041.      4451.      -13.5   2.77e- 40
2 Lot_Area           0.0975     0.127     0.770 4.41e-  1
3 First_Flr_SF     144.         2.66     54.2   0        
4 Second_Flr_SF     82.9        2.27     36.5   6.97e-241
5 Central_AirY   48346.      3782.       12.8   1.93e- 36

Probably the most useful column here is the estimate column, which provides the estimated regression coefficients.

We will have much more to say about these types of manipulations in class.

Footnotes

  1. Not the average difference as this data has no paired structure.↩︎

  2. You should be a bit unsatisfied with “enough” and “not too terrible”: these terms have more precise definitions, but they aren’t in our scope here.↩︎

  3. The t_test function is a thin wrapper around the t.test function provided to us by base R. The infer version has the nice property of returning its results in a data frame, rather than a more obscure object type, but the specific values returned are equal, so it’s fine to use t.test instead.↩︎

  4. On most US keyboards, the ~ character can be found just above the tab key on the right hand side, and can be typed by holding down shift and hitting the ` key.↩︎

  5. You may have heard these variables referred to as the independent and dependent variables in other contexts. This terminology is absurd. In statistics, dependence is a symmetric relationship: \(Y\) depends on \(X\), then \(X\) depends on \(Y\); and if \(Y\) is independent of \(X\), then \(X\) is independent of \(Y\). Almost all of our methods are looking for some relationship between two variables, so a priori calling one of them “independent” is just silly.↩︎

  6. It’s conventional to specify the alternative instead of the null, but if you recall your introductory courses, we really only test against the null, never for the alternative so I find this to be a strange design choice.↩︎

  7. The specifics of mapping a categorical variable to a numerical model like linear regression are beyond what we talk about in this course, but surprisingly non-trivial. Ask your regression professor about contrasts or encodings.↩︎